Cyclic loading induced evolution in mechanical properties leading to fatigue failure is studied and characterized by investigating deformation processes activated in particular – defined microstructures. Activation of deformation processes investigated ex-situ using electron microscopy are correlated with cyclic evolution of various parameters such as unrecovered strain, el. resistance, surface strain localization, mechanical hysteresis, dissipated heat, temperature [1-4]..
[1]P. Sedmák, P. Šittner, J. Pilch, C. Curfs: Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Materialia 94 (2015) 257-270
[2]O. Tyc, J. Pilch, P. Šittner: Fatigue of superelastic NiTi wires with different plateau strain Procedia Structural Integrity 2 (2016) 1489-1496.
[3]E. Alarcon, L. Heller, S. Arbab Chirania, P. Šittner, J. Kopeček, L. Saint-Sulpice, S. Calloch
Fatigue performance of superelastic NiTi near stress-induced martensitic transformation
Int. J. Fatigue 95 (2017) 76 – 89.
[4]L Heller, H Seiner, P Šittner, P Sedlák, O Tyc, L Kadeřávek, On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi, International Journal of Plasticity 111(2018)53-71