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Motivation

lattice of impurities deposited on the surface of a conventional BCS superconductor - ideal
playground for studying the interplay of antagonistic orders - magnetism and superconductivity
▶ hydrogenated superconducting graphene (1)
▶ transition metal (Mn, Fe, Cu) phtalocyanines on Pb or In (3,4)

▶ boron-doped diamond coated with hydrogen layer (2)

(1) J. L. Lado and J. Fernández-Rossier, 2D Mater. 3, 025001 (2016).
(2) G. Zhang et al., Sci. Adv. 6, aaz2536 (2020).
(3) S. Yoshizawa et al., Nano Letters 17, 2287 (2017).
(4) T. Uchihashi et al., Mol. Syst. Des. Eng. 4, 511 (2019).
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Introduction the superconducting periodic Anderson model

lattice of impurities deposited on the surface of a conventional BCS superconductor

superconducting periodic Anderson model:
▶ conduction band with hopping and local attractive interaction (electron-phonon)
▶ impurity band with local repulsive interaction (Coulomb)
▶ impurities interact only via the hybridization with the conduction band, not directly (no

hopping in the impurity band)

This model was already employed and solved using DMFT (1) and used to study reentrant
behavior of superconductivity in f -electron superconductors (2).

(1) D. J. Luitz and F. F. Assaad, Phys. Rev. B 81, 024509 (2010).
(2) W. V. van Gerven Oei and D. Tanasković J. Phys.: Condens. Matter 32 325601 (2020).
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Introduction the superconducting periodic Anderson model

▶ Hamiltonian

H = Hd + Hc + Hhyb

▶ conduction band: attractive interaction is treated on static mean field (BCS) level

Hc =
∑
kσ

εkσc†
kσckσ − ∆

∑
k

(c†
k↑c

†
−k↓ + H.c.), εkσ = εk − µ − σH

▶ superconducting order parameter:

∆ = g
∑

k
⟨c−k↓ck↑⟩ ≡ g

∑
k

⟨c†
k↑c

†
−k↓⟩

▶ non-dispersive correlated band (impurities) - no kinetic term:

Hd =
∑
iσ

εiσd†
iσdiσ + U

∑
i

d†
i↑di↑d

†
i↓di↓, εiσ = εi − µ − σH

▶ coupling:

Hhyb = −
∑
kσ

(Vkσd†
kσckσ + H.c.), d†

kσ =
1

√
N

∑
i

e−ik·ri d†
iσ
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Methods Hamiltonian in Nambu formalism

▶ Nambu double-spinor ψk and the 4 × 4 matrix Ek:

ψk =


d k↑

d†
9k↓

c k↑

c†
9k↓

 , Ek =


ε↑ 0 −Vk↑ 0
0 −ε↓ 0 V9k↓

−Vk↑ 0 εk↑ −∆
0 V9k↓ −∆ −ε9k↓


▶ Hamiltonian in Nambu formalism:

H =
∑

k
ψ

†
k Ekψk + U

∑
i

d†
i↑di↑d

†
i↓di↓

▶ Nambu Green function and the Dyson equation:

G0(k, ω) = [ωI − Ek]−1
, G(k, ω) = [G−1

0 (k, iω) − Σ(k, ω)]−1

▶ correlation-induced self-energy: only in the d-electron sector

Σ(k, ω) =


Σd Sd 0 0
S̄d Σ̄d 0 0
0 0 0 0
0 0 0 0


c-electrons feel correlations only via hybridization V
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Methods the non-interacting (U = 0) model

▶ square lattice: εk = −2t[cos(akx ) + cos(aky )]

▶ band structure: zeros of DetG−1
0 (k, ω) and local density of states for V = t/2:
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▶ what about U?
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Methods dynamical mean field theory (DMFT)

▶ DMFT maps the lattice model on the local impurity model: on our case the superconducting
impurity Anderson model (SCIAM) with self-consistently determined bath (hybridization
function)

▶ it neglects all spatial correlations, self-energy becomes local: Σ(k, ω) ≈ Σ(ω)
▶ local element of the Green function:

Gloc(ω) =
∑

k
G(k, ω) =

(
Gd,loc Gdc,loc

G†
dc,loc Gc,loc

)

▶ d-electron bath Green function: input to the auxiliary impurity problem

G(ω) = [G−1
d,loc(ω) + Σ(ω)]−1

▶ solve the impurity model using your favourite solver for SCIAM:
result: Gimp(ω) and Σimp(ω) = G−1(ω) − G−1

imp (ω)

▶ identify Σd (ω) with Σimp(ω)
▶ Dyson equation:

G(k, ω) = [G−1
0 (k, ω) − Σ(ω)]−1

, Σ(ω) =
(Σd (ω) 0

0 0

)
▶ iterate until Gd,loc(ω) = Gimp(ω)
▶ hard part: solve the SCIAM

(1) A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

(2) G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
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Methods impurity solvers: CT-HYB quantum Monte Carlo

▶ continuous-time hybridization expansion quantum Monte Carlo (1)
▶ diagrammatic expansion in Hhyb around the ’atomic limit’ Hd + Hc

▶ problem: Hamiltonian is not conserving
solution: particle-hole transformation in the σ = ↓ segment (2):

d†
↑ → d†

↑ , c†
k↑ → c†

k↑, d†
↓ → d↓, c†

k↓ → c−k↓

▶ it maps the SC model on non-SC: ⟨c†
k↑c

†
−k↓⟩ → ⟨c†

k↑ck↓⟩,
with attractive interaction −U,
local energy ε becomes the magnetic field −H and vice versa.

▶ we use the TRIQS/CTHYB (triqs.github.io) implementation of the algorithm (3,4)

Pros and cons:
✔ CT-HYB provides ’numerically exact’ solution to SCIAM: occupation numbers, c-band gap

∆ = g
∑

k⟨c−k↓ck↑⟩, d-band induced pairing νd = ⟨d↓d↑⟩, impurity density matrix. . .
✔ no fermionic sign problem
✘ works only in finite temperatures, comp. time scales as tc ∼ T−2

✘ simulation is performed in imaginary time domain: no direct access to spectral functions
w/o ill-defined analytic continuation iωn → ω + i0

(1) E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
(2) D. J. Luitz and F. F. Assaad, Phys. Rev. B 81 024509, (2010).
(3) O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, and P. Seth, Comput. Phys. Commun. 196, 398 (2015).
(4) P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, Comput. Phys. Commun. 200, 74 (2016).
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Methods analytic continuation of stochastic QMC data

▶ CT-HYB Green function is calculated in imaginary time, no direct access to spectral functions
▶ analytic continuation iτ → ω of noisy data is an ill-defined problem (there is an infinite

number of spectral functions A(ω) which correspond to the same noisy G(τ)
▶ G(τ) is surprisingly insensitive to small changes in A(ω)
▶ inverse problem: solve an integral equation for A(ω) (direct problem A(ω) → G(τ) is easy)

G(τ) =
∫

dω
e−τω

1 + e−βω
A(ω)

▶ usual approach: Bayesian inference, e.g., maximum entropy method (1)
example: Andreev states of superconducting impurity model:
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▶ not reliable for spectra with sharp features, e.g, Andreev states/bands
▶ there are tricks how to increase the resolution

(1) M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).
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Methods analytic continuation of stochastic QMC data
▶ Green function in imaginary time holds certain information about the value of the spectral

function at the Fermi energy (1). Since

G(τ) =
∫

dω
e−τω

1 + e−βω
A(ω), β = 1/kBT

for τ = β/2 (center of the imaginary time interval) we get

G(β/2) =
∫

dω
A(ω)

2 cosh(βω/2)
▶ G(β/2) is a measure of the integrated spectral weight on an interval of few kBT around the

Fermi energy.
▶ As (β/2) cosh−1(βω/2) → πδ(ω) for β → ∞: βG(β/2) ≈ πA(0) for very low

temperatures
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(1) A. Liebsch, Phys. Rev. Lett. 91, 226401 (2003).
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Methods impurity solvers: iterative perturbation technique

▶ simple approximate solver: second-order perturbation theory around the U = 0 limit (1)
▶ self-energy in imaginary time: Hartree-Fock and dynamic correction up to U2:

Σσ(τ) = UG9σ(0−) − U2Ḡ9σ(−τ)[G↑(τ)Ḡ↓(τ) − F↑(τ)F̄↓(τ)]

Sσ(τ) = UF9σ(0−) − U2F9σ(−τ)[G↑(τ)Ḡ↓(τ) − F↑(τ)F̄↓(τ)]

Σ = − −

S = − −

Pros and cons:
✔ IPT can be implemented directly in real-frequency domain or we can use the Pade analytic

continuation from imaginary time
✘ only approximate solution, works best around half-filling
✘ cannot describe the strongly correlated (Kondo) regime
✘ IPT can fail in the case of a spinful ground state of the impurity model (3)

(1) H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 (1996).
(2) A. Garg, H. R. Krishnamurthy, and M. Randeria, Phys. Rev. B 72, 024517 (2005).

(3) M. Žonda, V. Pokorný, V. Janǐs, and T. Novotný, Sci. Rep. 5, 8821 (2015).
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Methods 0 − π transition in superconducting impurity Anderson model

▶ low-energy spectrum of SCIAM consists of two spin-singlets and one spin-doublet
▶ a quantum phase transition separates phases with singlet (0) and doublet (π) ground state
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▶ QPT is characterized by
▶ the crossing of the in-gap YSR states ar the Fermi energy
▶ change of sign of the induced pairing on the impurity
▶ change of the direction of the DC Josephson current

E. J. H. Lee et al., Nat. Nano. 9, 79 (2014).

▶ impurity quantum phase transition: happens on
a zero-dimensional subsystem (local impurity)
connected to an infinite system (lead)

▶ as the U = 0 case is always a singlet,
diagrammatic perturbation techniques in U
cannot describe the doublet phase: no way to
switch the interaction on adiabatically
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Results phase diagram for square lattice

half-filling, V = 0.5t and kBT = 0.025t:
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▶ small g : Kondo insulator phase with νd = 0
▶ two SC phases that differ by the sign of the induced pairing: analogies of the 0 and π phases

of SCIAM, separated by first order transition (crossover at finite T )
▶ reentrant behavior for small U
▶ interaction U promotes superconductivity
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Results square lattice

0

1

2

0 1 2 3 4 5 6 7 8

SC+

SC
−

KIU
/t

g/t

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(a)

square lattice

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(b)

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(c)

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(d)

ν d

U/t

5

4

IPT, g/t = 3

5

4

CT-HYB, g/t = 3

ν c

U/t

D

U/t

G
d
(β
/2
)

U/t

▶ only the induced pairing νd = ⟨d↓d↑⟩ changes sign - phase transition is limited to the
impurity band
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Results spectral function for square lattice from IPT
diagonal part of the in-gap spectral function for V = 0.5t, g = 5t and kBT = 0.025t:
the Andreev bands:
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▶ merging of in-gap bands at U ≈ 0.6t where
νd changes sign, in analogy to the 0 − π
transition in the impurity model (SCIAM)

▶ additional band emerges at larger
interaction strength
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Results spectral functions: IPT vs CT-HYB

IPT:
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▶ MaxEnt data obtained using ana cont package (1)
▶ Resolution was enhanced by calculating the continuation of Grot(z) = Gn(z) − Ga(z) and

then separating the output to normal and anomalous part. Works only at half filling (2).

(1) J. Kaufmann, K. Held, arXiv:2105.11211, josefkaufmann.github.io/ana cont

(2) E. Gull, O. Parcollet, and A. J. Millis, Phys. Rev. Lett. 110, 216405 (2013).
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Results phase diagram for triangular lattice

half filling, V = 0.5t and kBT = 0.025t:
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▶ Similar topology as for the square lattice due to local nature of DMFT.
▶ IPT fails to describe the SC− phase
▶ Triangular lattice is not bipartite: DOS is not symmetric at half-filling. The total filling is

controlled by the shift of a chemical potential which is over-estimated in IPT.
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Conclusions

superconducting periodic Anderson model solved within DMFT framework:
▶ simple model to study the effect of the impurity band on the superconductor and vice versa
▶ attractive interaction in the conduction band treated using static mean-field (BCS)
▶ repuslive interaction in the impurity band treated using DMFT
▶ DMFT neglects spatial correlations whole keeping the temporal fluctuations intact
▶ two superconducting phases separated by a first order transition (crossover at finite T ), in

analogy to the 0 and π phases of the superconducting impurity Anderson model:
▶ phases differ by the sign of the induced pairing,
▶ in-gap bands merge at the Fermi energy around the transition point (this could explain

the existence of areas of high ZBC in certain experiments),
▶ phase transition happens only in the impurity band

▶ increasing interaction strength promotes superconductivity in the half-filled model

Future research:
▶ implement a solution of a renormalized effective model (the ’generalized atomic limit’) we

recently developed as a DMFT solver (1,2) to replace IPT
▶ fast efficient and reliable, allows for excessive parameter scans
▶ implement cluster DMFT scheme to incorporate spatial correlations in the model
▶ study the effects of a ferromagnetic layer on superconducting substrate

(1) V. Pokorný and M. Žonda, Phys. Rev. B 107, 155111 (2023).

(2) M. Žonda, P. Zalom, T. Novotný, G. Loukeris, J. Bätge, and V. Pokorný, Phys. Rev. B 107, 115407 (2023).
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Appendix MaxEnt for matrix-valued Green functions

▶ Unitary transformation T = [σx − σz ]/
√

2 diagonalizes the SCIAM Hamiltonian at half
filling (1).

▶ Green function Grot(z) = Gn(z) − Ga(z), (z = ω + i0 or iωn) is diagonal at half filling.
▶ The ABS in Grot(ω) are more pronounced - easier to fit using MaxEnt.
▶ Gn(ω) = [Grot(ω) − Grot(−ω)]/2, Ga(ω) = −[Grot(ω) + Grot(−ω)]/2.
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▶ we also obtain the anomalous spectrum
▶ take-home message: off-diagonal part of a matrix fermionic spectral function is not bosonic:

sgn(ω)Aa(ω) is not always non-negative.
▶ Away from half-filling: similar, but more complex tricks are possible (2,3).
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Appendix Non-interacting model

Non-interacting (U = 0) model
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▶ The increasing hybridization
strength promotes the induced
pairing νd but weakens the sc
correlations in the conduction
band νc .

▶ Induced pairing shows reentrant
behavior w.r.t. temperature at
larger values of the hybridization
strength.
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Appendix averaged CT-HYB perturbation order

▶ CT-HYB performs diagrammatic expansion in hybridization term Hhyb around the atomic
limit

▶ statistics of the expansion order k can be accumulated during the simulation
▶ average expansion order ⟨k⟩ = ⟨Hhyb⟩/kBT holds the information about the hybridization

between the conduction and impurity bands
▶ temperature dependence of phase boundaries can be extracted from its behavior
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