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» Nanoscopic superconducting junctions

> Magnetic molecules on superconductors
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CNT: carbon nanotube, PTM: polychlorotriphenylmethyl, Pc: phthalocyanine
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Introduction superconducting impurity systems

» simplest model: single-level quantum dot connected to BCS superconducting leads

Aeier | 4mmp ) | Acivr
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P parameters:
e quantum dot: local energy £ and Coulomb interaction strength U
e leads: gap width A and phase difference ¢ = ¢ — pr
e coupling: tunneling rates [, = 71'|Va|2pa, a=LR
P typical values for nanowire junctions:
e A =100 — 1000ueV (150ueV for Al, 400ueV for NbTiN, 2.15meV for NbSe;. ..)
e U ~ 10A - dominant energy scale
e [~ A (typically, but varies much between setups)
e ¢ € (0,27) can be tuned by magnetic flux in SQUID setups, zero otherwise
P most of the properties are governed by the behavior of the in-gap, Andreev bound states
(ABS) (also known as Yu-Shiba-Rusinov, YSR states)

DoS 400 410 420 430
E. J. H. Lee et al., Nat. Nano. 9, 79 (2014).

P crossing of the Andreev bound states at the Fermi energy: singlet-doublet (0 — ) impurity
quantum phase transition
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Introduction superconducting Anderson impurity model
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P such system can be often reliably described using superconducting Anderson impurity model

H=Hs+ Y (HS +Hpp) a=LR
«
P single-level quantum dot (w/o magnetic field)
Ho=e> did, +U (d{dT - 1/2) (djd¢ - 1/2)
o

(local energy shifted by U/2 so e = 0 corresponds to a half-filled impurity)

V. Meden, J. Phys. Condens. Matter 31, 163001 (2019).
D. J. Luitz, F. F. Assaad, T. Novotny, C. Karrasch, and V. Meden, Phys. Rev. Lett. 108, 227001 (2012).
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P such system can be often reliably described using superconducting Anderson impurity model

Ho=Ha+p (HE+Hpp), a=LR

P single-level quantum dot (w/o magnetic field)
g=ed> did, +U (d{dT - 1/2) <djd¢ - 1/2)
o

(local energy shifted by U/2 so e = 0 corresponds to a half-filled impurity)

P superconducting leads
= Z 5kc:;kacaka - Az(e”"" lk? Co—ky THe)
ko k

AelPa = 8(C, k| Cakp) is the (complex) BCS order parameter

V. Meden, J. Phys. Condens. Matter 31, 163001 (2019).
D. J. Luitz, F. F. Assaad, T. Novotny, C. Karrasch, and V. Meden, Phys. Rev. Lett. 108, 227001 (2012).
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AelPa = 8(C, k| Cakp) is the (complex) BCS order parameter
» coupling terms
Hl?;/b = - Z(V‘lkclkadao + H'C')7 a - T‘-‘V | Pa
ko

V. Meden, J. Phys. Condens. Matter 31, 163001 (2019).
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Introduction superconducting atomic limit

» simple model but qualitatively correct, can illustrate the basic physics

P infinite superconducting gap, A — oo after we take the infinite-bandwidth limit (otherwise
we decouple the leads and end up with a trivial model)

P exactly solvable atomic model (4 X 4 matrix in |0), | 1), |1}, | 1) basis)
Hoo = did, — (rq,dldl + H.c‘) + U<d;dT71/2>(dId¢fl/2)
o

where ', = [ e/l + Tge'?R
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Introduction superconducting atomic limit

» simple model but qualitatively correct, can illustrate the basic physics

P infinite superconducting gap, A — oo after we take the infinite-bandwidth limit (otherwise
we decouple the leads and end up with a trivial model)

P exactly solvable atomic model (4 X 4 matrix in |0), | 1), |1}, | 1) basis)
Hoo = eZde = (redid] +H.c) + U(dld,~1/2)(d]d,~1/2)

where ', = [ e/l + Tge'?R

P spectrum consists of two spin-singlets and one spin-doublet

2.0 . . . . 2.0 . . . .
cigenvalues of Mo ABS energies

e=0,p=0

7 phase

singlet
doublet

0 2 1 6 8 10 0 2
u/r u/r

-
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P crossing of the ABS states at the Fermi energy marks the singlet-doublet (0 — 7) impurity
quantum phase transition at U = 2, /T2 + 2.
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Methods superconducting Anderson impurity model

solvers for the superconducting Anderson impurity model

» diagrammatic expansion techniques (Hartree-Fock, second-order PT...) - fast and simple,
but bound to the singlet (0) phase only
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solvers for the superconducting Anderson impurity model

» diagrammatic expansion techniques (Hartree-Fock, second-order PT...) - fast and simple,
but bound to the singlet (0) phase only

P effective models (superconducting atomic limit, zero bandwidth limit) - often qualitatively
correct, but quantitatively off (even by orders of magnitude)

» numerical renormalization group (NRG) - usually the method of choice for one or two
correlated levels, cannot be employed for more complicated systems

» CT-HYB quantum Monte Carlo - flexible method, can be employed for various geometries
and multi-dot setups, but

e formulated in imaginary-time formalism - dynamical sign problem prohibits real-time
implementations (exceptions exist, i.e., the inchworm algorithm)

e bound to finite temperatures (kg T 2 0.01A)

e no direct access spectral functions / Andreev bound state energies

» Can we obtain the ABS energies from CT-HYB QMC without analytic continuation?

P Is it possible to modify the effective models to give quantitatively reasonable solutions?
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Methods Analytic continuation of stochastic QMC data

» CT-HYB Green function is calculated in imaginary time, no direct access to spectral
functions/ABS frequencies

P analytic continuation iT — w of noisy data is an ill-defined problem (there is an infinite
number of spectral functions A(w) which correspond to the same noisy G(7)

» G(7) is surprisingly insensitive to small changes in A(w)
P inverse problem: solve an integral equation for A(w) (direct problem A(w) — G(7) is easy)
—rw

e
G(T):/dwmA(w)

P usual approach: Bayesian inference, e.g., maximum entropy method (1)
1

CT-HYB'+ MaxEnt —
ABS energy from NRG —

0.1 08 08

B 9 10 11 12

0.4

U=10A,T = A, kpT = 0.05A

0 5 10 15 20
TA

P lesson from the superconducting atomic limit: the low-energy (|w| < A) part of the spectral
function (i.e., Andreev bound states) dictates most of the properties of these systems

» we might not need the whole spectral function

(1) M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).
7/20



Methods Low-energy model

>

interacting Green function

Wll4s(@)] — € = Epw)  Ap(w) - L,(w) )

1 M) — () =
¢ @)= G (W) =x(w) ( Do) = Taw)  wllts()] + e+ Zh(~w)

we expand the w-dependent terms around w = 0 (Fermi energy):

r r , 4 Mo o 4
s(w) = 1 + 55" + 0w, Do) =Ty + 550" + O,
21 0°%;

155 row =

%
¥i(w) = 5;(0) + ua—wf(o +w

low-energy model: non-interacting atomic limit with renormalized parameters + correction
for incoherent states C(w) (X;(0) is just a real number)

—&£-%,00) Ty, —%.(0 . .
G lwy=z (¢ O Te ) 20 ) L o) = 26 (w) + Ew)]
M, —35(0) w4+ &+ %,(0)
renormalization factor: renormalized parameters:
r oz, \! B . .
Z=(1+Z_ W 0) s E§=1Ze, T,=12r,, ¥(0)=27%(0)
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Methods Low-energy model

>

v

ABS energies: poles of the Green function, zeros of det G ~*(w):

Eo = i\/[é + .02 + [y — £5(0))2 = iZ\/[E + Za(0) + [Fy — Z5(0))%.
quantum critical point is marked by the crossing of the ABS: Ep = 0

Iy, —X,(0) = £[e + Z,(0)]
(& sign reflects the electron-hole symmetry e — —¢)
its position depends only on the model parameters and self-energy at zero
unfortunately, this model always gives only two ABS energies, even in the 7 phase
model can be systematically improved by considering more terms in the expansion:

£,(0)

ZG,' = 7Tw2 +w—¢&—5%,00),

1 /(T - . -
767 = 5 <Ai; - z;’(0)> w? 4+, —5.(0)

we get a 4th order equation for ABS energies, but two always lie above the gap: no help
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> ABS energies: poles of the Green function, zeros of det G ~*(w):

Eo = i\/[é + .02 + [y — £5(0))2 = izx/la + Za(0) + [Fy — Z5(0))%.
P quantum critical point is marked by the crossing of the ABS: Ey = 0
Mo — 25(0) = £[e + 2a(0)]
(& sign reflects the electron-hole symmetry e — —¢)

P its position depends only on the model parameters and self-energy at zero

v

unfortunately, this model always gives only two ABS energies, even in the 7 phase

» model can be systematically improved by considering more terms in the expansion:
. £ .

zG7t = 7%142 +w—¢&—5%,00),

1 (T - . .
_1 2
ZG, ' = 5 <Ai; - z;’(o)> w® + Ty, — 2,(0)
we get a 4th order equation for ABS energies, but two always lie above the gap: no help

» We need to supply our model with the real-frequency derivatives of the self-energy at zero

» 1. Can we use CT-HYB data?

v

2. Can we use effective models to provide self-energy?
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Methods CT-HYB self-energy

» CT-HYB gives us self-energy in imaginary Matsubara frequencies w, = (2n+ 1)wkg T
P analytic continuation w, — w + i0: problematic

» we don’t need the whole self-energy, only the value and derivatives at w = 0 (all real)

illustration: 2PT solution at T = 0:
P Cauchy-Riemann equations (z = w + iw,):

0.4 ‘ ‘ ;
OReX;(z) 0OlmX;(z) s | (a),
Ow - Own,
OReT;(z)  0Im¥;(2) 0 ==
dwn ow 021 Rew, — ]
04| Re¥, — A
P higher derivatives: : Ilmgn —_
mY, —
9 ReX;(z)  9°ReX;(2) Rl -5 0 10
Ow? N w2 09 w/A

9 Re¥;(2) _ 2 ImE(2) (b)
i |
etc... 0
P allow us to estimate the derivatives along 0.1 w
real axis from imaginary-frequency data

—0.2 . . .

» numerical derivative of stochastic function: 10 0
requires high-quality QMC data wa/A
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Methods Generalized atomic limit (GAL)

» can we somehow employ the knowledge of the exact solution in the atomic limit?
P low-energy limit of the non-interacting Green function: non-interacting atomic model

1y o (CRAs@] = Bplw) o (w—E Ty
Co “”f( Ap(w) w[1+<w)1+e)*z (fs«» w+€>+cm

Z7'=(14T/D), £=2Ze T,=2r,

P it corresponds to non-interacting atomic Hamiltonian

Foww = > _FIF, — (ﬁpfgfj +H.c.)
o
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» can we somehow employ the knowledge of the exact solution in the atomic limit?

P low-energy limit of the non-interacting Green function: non-interacting atomic model

1y o (CRAs@] = Bplw) o (w—E Ty
Co (“’*< Ap(w) w[1+<w)1+e)*z (fs«» w+€>+c(w)

Z7'=(14T/D), £=2Ze T,=2r,

P it corresponds to non-interacting atomic Hamiltonian

Foww = > _FIF, — (I’vfgfj +H.c.)
o

P> we know the exact solution for the interacting problem: let us add the interaction part:

Floo _stTf ( AN c) + U(fTTfT—l/2><fffl—1/2)

P this way we could replace the exact self-energy by the scaled self-energy in the atomic limit
T(wid, e, T V)~ 27 Ea(wi B, 0, T, 0)

P problem: we don't know the relation between U and 0
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Methods Generalized atomic limit (GAL)

P hint: the leading order asymptotics of the GAL Green function w/o the correction C:

- —1

w—& T Z /10
Go(w)=Z| . ? == O(w™?
o) (rv w+€> w(O 1)+ @)

P it describes particles with non-cannonical anticommutation relations:
{do.di} = Zbap

i.e., quasiparticle with weight Z = (1 +T/A)"! <1

P we can formally rescale the operators so they obey standard commutation relations:
_ T T
f,=Vvzd,, fl=VZd]

and we obtain an atomic model with correct asymptotic behavior:
Hoo =3 £1F, — (ﬁprTff + H‘c.) + C/(fT*qu/z)(ffflq/z)
o

P this 'hand-waving’' argument gives us a recipe how to rescale the parameters:

Z'=@1+r/p), e=2e, F,=2r,, 0=2°U

P the band correction C corrects the asymptotic behavior of the GAL Green function
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Methods Generalized atomic limit

I'=0.64, ¢ =0, half-filling (,(0) = U/2), no mag. field (9X,/w|o = 0)

98, /0wl

» how good is this approximation?

> we compare X(w; A, p,e,T, U) vs. Z71% o (w; A, @, Ze, ZT, Z2U)

0.0

—2.0

—4.0

—6.0

CT-HYB, kgT/A =0.1
0.05
0.033
GAL, T =0

—

1 2
U/A

3.0

2.0

0.0
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» how good is this approximation?
> we compare X(w; A, p,e,T, U) vs. Z71% o (w; A, @, Ze, ZT, Z2U)

I'=0.64, ¢ =0, half-filling (,(0) = U/2), no mag. field (9X,/w|o = 0)

4

0.0 ‘
—20 1
-
3
=
540 |
© CT-HYB, kgT/A =01 ——
0.05 ——
—6.0 | 0.033 —— ]
GAL,T=0 —
0 1 2 3
U/A

We have two options how to feed our low-energy model with self-energy:

» CT-HYB self-energy

P atomic limit with properly rescaled parameters

3.0

2.0

0.0

0

1

2
U/A
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Results Effect of interaction strength

P interaction strength U is usually the largest energy scale (U ~ 10A)
» we compare the CT-HYB and GAL results w.r.t. 'numerically exact’ NRG data

half-filling, ¢ =0, I = A: r=2A:
0.60 T T T T T T T 0.80 T T T T T T T T
GAL+C —— GAL+C ——-
NRG —e— NRG ——
CT-HYB, 1 deriv. o y 0.60 | CT-HYB, 1 deriv. o |
0.40 b 2deriv. + 7] 2 deriv. ¢
<
~ L
IS
0.20
[ 7z
s
(a) T/A=1 (c) 7 T/A=2
0.00 —_— 0.00 e
GAL+C ——- GAL4C ——-
0.20 NRG —— -+ 0.15 NRG —— |
CT-HYB, kpT/A =01 : CT-HYB, kpT/A =01
0.05 0.05 -«
0.10 1
x 0.10 ¢ N
0.05 1
0.00 0-00 S S =e—a—
(b) @
1 1 1 1 1 1 1 —0.05 1 1 1 1 1 1 1 1
0 1 2 3 5 6 7 8 0o 2 4 6 8 10 12 14 16 18
U/A U/A
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Results Effect of the band correction C

P band correction C contains all the higher terms of the expansion of the hybridization terms
s(w) and Ay, (w)

P results of GAL with/without the correction vs NRG:
1 T

id ‘ ‘ — ‘ ‘
GAL ——— /
GAL+C ——

0.8

0.6

Eo/A

0.4

0.2

U/A
such correction is important:
P keeps the ABS energies below A
P guarantees the exact solution for U = 0

P restores the continuous part of the spectral function and provides the correct asymptotics for
the Green function

P corrects the behavior of the Josephson current (1)

(1) V. Pokorny and M. Zonda, arXiv:2209.11868 (2022).
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Results Effect of temperature

Ey/A

a

0.360

0.340

0.100 F---

0.080 -

» CPU time in CT-HYB simulation scales as t. ~ T2 low-T region is inaccessible
» we should look into the convergence w.r.t. decreasing temperature

T — T 0.200 T T T
0 phase CT-HYB, 1 deriv. o 7 phase
2deriv. o A TTTTTTTTeSgI T oI 1:‘:‘2’&_[}7;7174&_’
NRG --- 4 0160 =247,U= 1
1 3
= .120 | CT-HYB, 1 deriv.
_ _ 2 deriv.
| o=~  I'=2AU=6A| NRG b
0.320 - - - 0.080 . . .
‘ ‘ CT-HYB « | _go05 ‘ ‘ ‘
NRG --- '
2—0.010
0.060 ‘ ‘ ‘ —0.015 f
0 0.05 0.15 0.2 0 0.05 0.15 0.2

0.1 0.1

ksT/A kpT/A

» ABS energy changes slowly below kg T ~ 0.1A, very little below kg T ~ 0.05A

P slight systematic disagreement between CT-HYB and QMC (below 2%) at low-T

> integral values (e.g. induced pairing v = (d| dy)) match remarkably well (up to four decimal
places)

» ABS energy from NRG is T-independent (1), CT-HYB predicts the change in agreement
with some other results (2-3)

(1) R. Zitko, Phys. Rev. B 93, 105125 (2016).
(2) C. Liu, Y. Huang, Y. Chen, and C. S. Ting, Phys. Rev. B 99, 174502 (2019).

(3) V. Jani$ and J. Yan, AIP Adv. 12, 035139 (2022).
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Results Effect of local energy level

P GAL without corrections does not provide reasonable results away from half-filling

P a correction to the value of the energy level e was obtained by fitting the 'numerically exact’
NRG data (1)

P results for [ = A, U =64, ¢ =0:

10 : ‘ ‘ ‘
G T=0 — 1.00
CT-HYB, kBT/A 0.1 -«
0.05
0033 -
MGAL+C - 0.75
a di
2
3 0.50
] 0.25
0.0
. - s . L 010 " ‘ : w
/A
0.6 : w ‘
0.05 |- 4
04 | 1
N 0.00 7
02 L 1 —
b
0.0 ®) . . . -0.05 - - .
0 1 9 3 4 0 1 2 3 4
c/A e/A

(1) A. Kadlecova, M. Zonda, V. Pokorny, and T. Novotny, Phys. Rev. Applied 11, 044094 (2019).
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Results The fate of the second pair of ABS

P low-energy model cannot describe the second pair of ABS in the 7 (doublet) phase

» how big problem is that?

phase diagram in the ' — U plane:

8.0 T T T T T T T
NRG, o =0, U, =
Uy ===
p=7/2,U. o
GAL+C, ¢ =0, U. 7 phase
6.0 F Uy ———
p=m/2, U ==
<
= 4.0 | - o /
20 e 0 phase
0.0 L I I . . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4

» ¢ = 0: second pair of ABS is bound to low values of I' and U, far from experimental regime

» > 0: second pair of ABS is always present, but approaches the gap edge
18/20



Conclusions

» we introduced two methods to calculate the ABS energies of a superconducting quantum dot
system:
» low-energy model + CT-HYB self-energy:
v reliable method which circumvents the need for analytic continuation of noisy Green
function
v can be straightforwardly utilized for more complex setups (multi-level dots, multi-dot,
multi-terminal setups)
X bound to lower values of the interaction strength
X does not provide all ABS energies in the 7 phase
X requires high-quality QMC data: computationally expensive

(1) M. Zonda, P. Zalom, T. Novotny, G. Loukeris, J. Bitge, and V. Pokorny, arXiv:2211.10312 (2022).
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function
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» generalized atomic limit:

v
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fast (seconds on a standard PC), simple, provides a reasonable solution in the almost
whole parameter space

works well also for double quantum dot systems (1)

problematic away from half-filling without ad-hoc corrections (MGAL)

the correct form of the interaction part not yet known (work in progress)

(1) M. Zonda, P. Zalom, T. Novotny, G. Loukeris, J. Bitge, and V. Pokorny, arXiv:2211.10312 (2022).
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X does not provide all ABS energies in the 7 phase
X requires high-quality QMC data: computationally expensive
» generalized atomic limit:
v fast (seconds on a standard PC), simple, provides a reasonable solution in the almost
whole parameter space
v works well also for double quantum dot systems (1)
X problematic away from half-filling without ad-hoc corrections (MGAL)
X the correct form of the interaction part not yet known (work in progress)
P both these methods can be used as solvers for superconducting dynamical mean-field theory

» GAL can be generalized to non-equilibrium situations (e.g., microwave response)

(1) M. Zonda, P. Zalom, T. Novotny, G. Loukeris, J. Bitge, and V. Pokorny, arXiv:2211.10312 (2022).
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