Effective low-energy models for superconducting impurity systems

V. Pokorný

FZU - Institute of Physics of the Czech Academy of Sciences, Prague

pokornyv@fzu.cz

13. 12. 2022, FZU - Institute of Physics

Motivation

- Nanoscopic superconducting junctions
- Magnetic molecules on superconductors

CNT: carbon nanotube, PTM: polychlorotriphenylmethyl, Pc: phthalocyanine

Introduction superconducting impurity systems

simplest model: single-level quantum dot connected to BCS superconducting leads

parameters:

- quantum dot: local energy ε and Coulomb interaction strength U
- leads: gap width Δ and phase difference $\varphi = \varphi_L \varphi_R$
- coupling: tunneling rates $\Gamma_{\alpha} = \pi |V_{\alpha}|^2 \rho_{\alpha}$, $\alpha = L, R$
- typical values for nanowire junctions:
 - $\Delta = 100 1000 \mu eV$ (150 μeV for Al, 400 μeV for NbTiN, 2.15meV for NbSe₂...)
 - $U \sim 10 \Delta$ dominant energy scale
 - $\Gamma \sim \Delta$ (typically, but varies much between setups)
 - $\varphi \in (0, 2\pi)$ can be tuned by magnetic flux in SQUID setups, zero otherwise
- most of the properties are governed by the behavior of the in-gap, Andreev bound states (ABS) (also known as Yu-Shiba-Rusinov, YSR states)

E. J. H. Lee et al., Nat. Nano. 9, 79 (2014).

crossing of the Andreev bound states at the Fermi energy: singlet-doublet $(0 - \pi)$ impurity quantum phase transition

Introduction superconducting Anderson impurity model

$$\Delta e^{i\varphi_L} \bigoplus_{\Gamma_L} \varepsilon, U \bigoplus_{\Gamma_R} \Delta e^{i\varphi_R}$$

such system can be often reliably described using superconducting Anderson impurity model

$$\mathcal{H} = \mathcal{H}_d + \sum_{\alpha} (\mathcal{H}_c^{\alpha} + \mathcal{H}_{hyb}^{\alpha}), \quad \alpha = L, R$$

single-level quantum dot (w/o magnetic field)

$${\cal H}_d = arepsilon \sum_\sigma d^\dagger_\sigma d_\sigma + U \left(d^\dagger_\uparrow d_\uparrow - 1/2
ight) \left(d^\dagger_\downarrow d_\downarrow - 1/2
ight)$$

(local energy shifted by U/2 so $\varepsilon = 0$ corresponds to a half-filled impurity)

superconducting leads

$$\mathcal{H}_{c}^{\alpha} = \sum_{\mathbf{k}\sigma} \varepsilon_{\mathbf{k}} c_{\alpha\mathbf{k}\sigma}^{\dagger} c_{\alpha\mathbf{k}\sigma} - \Delta \sum_{\mathbf{k}} (e^{i\varphi_{\alpha}} c_{\alpha\mathbf{k}\uparrow}^{\dagger} c_{\alpha-\mathbf{k}\downarrow}^{\dagger} + \text{H.c.})$$

 $\Delta e^{iarphilpha}=g\langle c_{lpha-{f k}\downarrow}c_{lpha{f k}\uparrow}
angle$ is the (complex) BCS order parameter

coupling terms

$$\mathcal{H}_{\text{hyb}}^{\alpha} = -\sum_{k\sigma} (V_{\alpha k} c_{\alpha k\sigma}^{\dagger} d_{\alpha \sigma} + \text{H.c.}), \qquad \Gamma_{\alpha} = \pi |V_{\alpha}|^{2} \rho_{\alpha}$$

V. Meden, J. Phys. Condens. Matter 31, 163001 (2019).

D. J. Luitz, F. F. Assaad, T. Novotný, C. Karrasch, and V. Meden, Phys. Rev. Lett. 108, 227001 (2012).

Introduction superconducting Anderson impurity model

$$\Delta e^{i\varphi_L} \bigoplus_{\Gamma_L} \varepsilon, U \bigoplus_{\Gamma_R} \Delta e^{i\varphi_R}$$

such system can be often reliably described using superconducting Anderson impurity model

$$\mathcal{H} = \mathcal{H}_d + \sum_{\alpha} (\mathcal{H}_c^{\alpha} + \mathcal{H}_{hyb}^{\alpha}), \quad \alpha = L, R$$

single-level quantum dot (w/o magnetic field)

$$\mathcal{H}_{d} = arepsilon \sum_{\sigma} d^{\dagger}_{\sigma} d_{\sigma} + U \left(d^{\dagger}_{\uparrow} d_{\uparrow} - 1/2
ight) \left(d^{\dagger}_{\downarrow} d_{\downarrow} - 1/2
ight)$$

(local energy shifted by U/2 so $\varepsilon = 0$ corresponds to a half-filled impurity)

superconducting leads

$$\mathcal{H}_{c}^{\alpha} = \sum_{\mathbf{k}\sigma} \varepsilon_{\mathbf{k}} c_{\alpha\mathbf{k}\sigma}^{\dagger} c_{\alpha\mathbf{k}\sigma} - \Delta \sum_{\mathbf{k}} (e^{i\varphi_{\alpha}} c_{\alpha\mathbf{k}\uparrow}^{\dagger} c_{\alpha-\mathbf{k}\downarrow}^{\dagger} + \text{H.c.})$$

 $\Delta e^{i\varphi_{\alpha}} = g \langle c_{\alpha-{\bf k}\downarrow} c_{\alpha{\bf k}\uparrow} \rangle \text{ is the (complex) BCS order parameter}$

coupling terms

$$\mathcal{H}_{\mathsf{hyb}}^{\alpha} = -\sum_{\mathbf{k}\sigma} (V_{\alpha\mathbf{k}} c_{\alpha\mathbf{k}\sigma}^{\dagger} d_{\alpha\sigma} + \mathsf{H.c.}), \qquad \Gamma_{\alpha} = \pi |V_{\alpha}|^{2} \rho_{\alpha}$$

- V. Meden, J. Phys. Condens. Matter 31, 163001 (2019).
- D. J. Luitz, F. F. Assaad, T. Novotný, C. Karrasch, and V. Meden, Phys. Rev. Lett. 108, 227001 (2012).

Introduction superconducting Anderson impurity model

$$\Delta e^{i\varphi_L} \bigoplus_{\Gamma_L} \varepsilon, U \bigoplus_{\Gamma_R} \Delta e^{i\varphi_R}$$

such system can be often reliably described using superconducting Anderson impurity model

$$\mathcal{H} = \mathcal{H}_d + \sum_{\alpha} (\mathcal{H}_c^{\alpha} + \mathcal{H}_{hyb}^{\alpha}), \quad \alpha = L, R$$

single-level quantum dot (w/o magnetic field)

$$\mathcal{H}_{d} = arepsilon \sum_{\sigma} d^{\dagger}_{\sigma} d_{\sigma} + U \left(d^{\dagger}_{\uparrow} d_{\uparrow} - 1/2
ight) \left(d^{\dagger}_{\downarrow} d_{\downarrow} - 1/2
ight)$$

(local energy shifted by U/2 so $\varepsilon = 0$ corresponds to a half-filled impurity)

superconducting leads

$$\mathcal{H}_{c}^{\alpha} = \sum_{\mathbf{k}\sigma} \varepsilon_{\mathbf{k}} c_{\alpha\mathbf{k}\sigma}^{\dagger} c_{\alpha\mathbf{k}\sigma} - \Delta \sum_{\mathbf{k}} (e^{i\varphi_{\alpha}} c_{\alpha\mathbf{k}\uparrow}^{\dagger} c_{\alpha-\mathbf{k}\downarrow}^{\dagger} + \text{H.c.})$$

 $\Delta e^{i\varphi_\alpha} = g \langle c_{\alpha-{\bf k}\downarrow} c_{\alpha{\bf k}\uparrow} \rangle \text{ is the (complex) BCS order parameter}$

coupling terms

$$\mathcal{H}_{\mathsf{hyb}}^{\alpha} = -\sum_{\mathbf{k}\sigma} (V_{\alpha\mathbf{k}} c_{\alpha\mathbf{k}\sigma}^{\dagger} d_{\alpha\sigma} + \mathsf{H.c.}), \qquad \Gamma_{\alpha} = \pi |V_{\alpha}|^{2} \rho_{\alpha}$$

- V. Meden, J. Phys. Condens. Matter 31, 163001 (2019).
- D. J. Luitz, F. F. Assaad, T. Novotný, C. Karrasch, and V. Meden, Phys. Rev. Lett. 108, 227001 (2012).

Introduction superconducting atomic limit

- simple model but qualitatively correct, can illustrate the basic physics
- infinite superconducting gap, $\Delta \rightarrow \infty$ after we take the infinite-bandwidth limit (otherwise we decouple the leads and end up with a trivial model)
- exactly solvable atomic model (4 \times 4 matrix in $|0\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, $|\uparrow\downarrow\rangle$ basis)

$$\mathcal{H}_{\infty} = \varepsilon \sum_{\sigma} d^{\dagger}_{\sigma} d_{\sigma} - \left(\Gamma_{\varphi} d^{\dagger}_{\uparrow} d^{\dagger}_{\downarrow} + \text{H.c.} \right) + U \Big(d^{\dagger}_{\uparrow} d_{\uparrow} - 1/2 \Big) \Big(d^{\dagger}_{\downarrow} d_{\downarrow} - 1/2 \Big)$$

where $\Gamma_{\varphi} = \Gamma_L e^{i\varphi_L} + \Gamma_R e^{i\varphi_R}$

- spectrum consists of two spin-singlets and one spin-doublet
- crossing of the ABS states at the Fermi energy marks the singlet-doublet (0π) impurity quantum phase transition at $U = 2\sqrt{\Gamma_{\varphi}^2 + \varepsilon^2}$.

Introduction superconducting atomic limit

- simple model but qualitatively correct, can illustrate the basic physics
- infinite superconducting gap, $\Delta \rightarrow \infty$ after we take the infinite-bandwidth limit (otherwise we decouple the leads and end up with a trivial model)
- exactly solvable atomic model $(4 \times 4 \text{ matrix in } |0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle$ basis)

$$\mathcal{H}_{\infty} = \varepsilon \sum_{\sigma} d_{\sigma}^{\dagger} d_{\sigma} - \left(\Gamma_{\varphi} d_{\uparrow}^{\dagger} d_{\downarrow}^{\dagger} + \text{H.c.} \right) + U \Big(d_{\uparrow}^{\dagger} d_{\uparrow} - 1/2 \Big) \Big(d_{\downarrow}^{\dagger} d_{\downarrow} - 1/2 \Big)$$

where $\Gamma_{\varphi} = \Gamma_L e^{i\varphi_L} + \Gamma_R e^{i\varphi_R}$

spectrum consists of two spin-singlets and one spin-doublet

► crossing of the ABS states at the Fermi energy marks the singlet-doublet $(0 - \pi)$ impurity quantum phase transition at $U = 2\sqrt{\Gamma_{\varphi}^2 + \varepsilon^2}$.

- diagrammatic expansion techniques (Hartree-Fock, second-order PT...) fast and simple, but bound to the singlet (0) phase only
- effective models (superconducting atomic limit, zero bandwidth limit) often qualitatively correct, but quantitatively off (even by orders of magnitude)
- numerical renormalization group (NRG) usually the method of choice for one or two correlated levels, cannot be employed for more complicated systems
- CT-HYB quantum Monte Carlo flexible method, can be employed for various geometries and multi-dot setups, but
 - formulated in imaginary-time formalism dynamical sign problem prohibits real-time implementations (exceptions exist, i.e., the inchworm algorithm)
 - bound to finite temperatures $(k_B T \gtrsim 0.01 \Delta)$
 - no direct access spectral functions / Andreev bound state energies

- Can we obtain the ABS energies from CT-HYB QMC without analytic continuation?
- Is it possible to modify the effective models to give quantitatively reasonable solutions?

- diagrammatic expansion techniques (Hartree-Fock, second-order PT...) fast and simple, but bound to the singlet (0) phase only
- effective models (superconducting atomic limit, zero bandwidth limit) often qualitatively correct, but quantitatively off (even by orders of magnitude)
- numerical renormalization group (NRG) usually the method of choice for one or two correlated levels, cannot be employed for more complicated systems
- CT-HYB quantum Monte Carlo flexible method, can be employed for various geometries and multi-dot setups, but
 - formulated in imaginary-time formalism dynamical sign problem prohibits real-time implementations (exceptions exist, i.e., the inchworm algorithm)
 - bound to finite temperatures $(k_B T \gtrsim 0.01 \Delta)$
 - no direct access spectral functions / Andreev bound state energies

- Can we obtain the ABS energies from CT-HYB QMC without analytic continuation?
- Is it possible to modify the effective models to give quantitatively reasonable solutions?

- diagrammatic expansion techniques (Hartree-Fock, second-order PT...) fast and simple, but bound to the singlet (0) phase only
- effective models (superconducting atomic limit, zero bandwidth limit) often qualitatively correct, but quantitatively off (even by orders of magnitude)
- numerical renormalization group (NRG) usually the method of choice for one or two correlated levels, cannot be employed for more complicated systems
- CT-HYB quantum Monte Carlo flexible method, can be employed for various geometries and multi-dot setups, but
 - formulated in imaginary-time formalism dynamical sign problem prohibits real-time implementations (exceptions exist, i.e., the inchworm algorithm)
 - bound to finite temperatures $(k_B T \gtrsim 0.01 \Delta)$
 - no direct access spectral functions / Andreev bound state energies

- Can we obtain the ABS energies from CT-HYB QMC without analytic continuation?
- Is it possible to modify the effective models to give quantitatively reasonable solutions?

- diagrammatic expansion techniques (Hartree-Fock, second-order PT...) fast and simple, but bound to the singlet (0) phase only
- effective models (superconducting atomic limit, zero bandwidth limit) often qualitatively correct, but quantitatively off (even by orders of magnitude)
- numerical renormalization group (NRG) usually the method of choice for one or two correlated levels, cannot be employed for more complicated systems
- CT-HYB quantum Monte Carlo flexible method, can be employed for various geometries and multi-dot setups, but
 - formulated in imaginary-time formalism dynamical sign problem prohibits real-time implementations (exceptions exist, i.e., the inchworm algorithm)
 - bound to finite temperatures $(k_B T \gtrsim 0.01 \Delta)$
 - no direct access spectral functions / Andreev bound state energies

- Can we obtain the ABS energies from CT-HYB QMC without analytic continuation?
- Is it possible to modify the effective models to give quantitatively reasonable solutions?

- diagrammatic expansion techniques (Hartree-Fock, second-order PT...) fast and simple, but bound to the singlet (0) phase only
- effective models (superconducting atomic limit, zero bandwidth limit) often qualitatively correct, but quantitatively off (even by orders of magnitude)
- numerical renormalization group (NRG) usually the method of choice for one or two correlated levels, cannot be employed for more complicated systems
- CT-HYB quantum Monte Carlo flexible method, can be employed for various geometries and multi-dot setups, but
 - formulated in imaginary-time formalism dynamical sign problem prohibits real-time implementations (exceptions exist, i.e., the inchworm algorithm)
 - bound to finite temperatures $(k_B T \gtrsim 0.01 \Delta)$
 - no direct access spectral functions / Andreev bound state energies

- Can we obtain the ABS energies from CT-HYB QMC without analytic continuation?
- Is it possible to modify the effective models to give quantitatively reasonable solutions?

Methods Analytic continuation of stochastic QMC data

- CT-HYB Green function is calculated in imaginary time, no direct access to spectral functions/ABS frequencies
- analytic continuation iτ → ω of noisy data is an ill-defined problem (there is an infinite number of spectral functions A(ω) which correspond to the same noisy G(τ)
- $G(\tau)$ is surprisingly insensitive to small changes in $A(\omega)$
- inverse problem: solve an integral equation for $A(\omega)$ (direct problem $A(\omega) \rightarrow G(\tau)$ is easy)

$$G(\tau) = \int d\omega rac{e^{-\tau\omega}}{1+e^{-\beta\omega}}A(\omega)$$

usual approach: Bayesian inference, e.g., maximum entropy method (1)

lesson from the superconducting atomic limit: the low-energy ($|\omega| < \Delta$) part of the spectral function (i.e., Andreev bound states) dictates most of the properties of these systems

- we might not need the whole spectral function
- (1) M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

Methods Low-energy model

interacting Green function

$$G^{-1}(\omega) = G_0^{-1}(\omega) - \Sigma(\omega) = \begin{pmatrix} \omega[1+s(\omega)] - \varepsilon - \Sigma_n(\omega) & \Delta_{\varphi}(\omega) - \Sigma_a(\omega) \\ \Delta_{\varphi}(\omega) - \Sigma_a(\omega) & \omega[1+s(\omega)] + \varepsilon + \Sigma_n^*(-\omega) \end{pmatrix}$$

• we expand the ω -dependent terms around $\omega = 0$ (Fermi energy):

$$s(\omega) = \frac{\Gamma}{\Delta} + \frac{\Gamma}{2\Delta^3}\omega^2 + \mathcal{O}(\omega^4), \qquad \Delta_{\varphi}(\omega) = \Gamma_{\varphi} + \frac{\Gamma_{\varphi}}{2\Delta^2}\omega^2 + \mathcal{O}(\omega^4),$$

$$\Sigma_j(\omega) = \Sigma_j(0) + \omega \frac{\partial \Sigma_j}{\partial \omega}\Big|_0 + \omega^2 \frac{1}{2} \frac{\partial^2 \Sigma_j}{\partial \omega^2}\Big|_0 + \mathcal{O}(\omega^3), \qquad j = n, a$$

low-energy model: non-interacting atomic limit with renormalized parameters + correction for incoherent states $C(\omega)$ ($\tilde{\Sigma}_i(0)$ is just a real number)

$$G^{-1}(\omega) = Z^{-1} \begin{pmatrix} \omega - \tilde{\varepsilon} - \tilde{\Sigma}_n(0) & \tilde{\Gamma}_{\varphi} - \tilde{\Sigma}_a(0) \\ \tilde{\Gamma}_{\varphi} - \tilde{\Sigma}_a(0) & \omega + \tilde{\varepsilon} + \tilde{\Sigma}_n(0) \end{pmatrix} + \mathcal{C}(\omega) = Z^{-1}[\tilde{G}^{-1}(\omega) + \tilde{\mathcal{C}}(\omega)]$$

renormalization factor: renormalized parameters:

$$Z = \left(1 + \frac{\Gamma}{\Delta} - \frac{\partial \Sigma_n}{\partial \omega}\Big|_0\right)^{-1}, \qquad \tilde{\varepsilon} = Z\varepsilon, \quad \tilde{\Gamma}_{\varphi} = Z\Gamma_{\varphi}, \quad \tilde{\Sigma}(0) = Z\Sigma(0)$$

Methods Low-energy model

▶ ABS energies: poles of the Green function, zeros of det $G^{-1}(\omega)$:

$$E_0 = \pm \sqrt{[\tilde{\varepsilon} + \tilde{\Sigma}_n(0)]^2 + [\tilde{\Gamma}_{\varphi} - \tilde{\Sigma}_a(0)]^2} = \pm Z \sqrt{[\varepsilon + \Sigma_n(0)]^2 + [\Gamma_{\varphi} - \Sigma_a(0)]^2}.$$

• quantum critical point is marked by the crossing of the ABS: $E_0 = 0$

$$\Gamma_{\varphi} - \Sigma_a(0) = \pm [\varepsilon + \Sigma_n(0)]$$

(\pm sign reflects the electron-hole symmetry arepsilon
ightarrow -arepsilon)

- its position depends only on the model parameters and self-energy at zero
- unfortunately, this model always gives only two ABS energies, even in the π phase
- model can be systematically improved by considering more terms in the expansion:

$$\begin{split} & ZG_n^{-1} = -\frac{\tilde{\Sigma}_n'(0)}{2}\omega^2 + \omega - \tilde{\varepsilon} - \tilde{\Sigma}_n(0), \\ & ZG_a^{-1} = \frac{1}{2}\left(\frac{\tilde{\Gamma}_{\varphi}}{\Delta^2} - \tilde{\Sigma}_a''(0)\right)\omega^2 + \tilde{\Gamma}_{\varphi} - \tilde{\Sigma}_a(0) \end{split}$$

we get a 4th order equation for ABS energies, but two always lie above the gap: no help

- We need to supply our model with the real-frequency derivatives of the self-energy at zero
- 1. Can we use CT-HYB data?
- 2. Can we use effective models to provide self-energy?

Methods Low-energy model

ABS energies: poles of the Green function, zeros of det G⁻¹(ω):

$$E_0 = \pm \sqrt{[\tilde{\varepsilon} + \tilde{\Sigma}_n(0)]^2 + [\tilde{\Gamma}_{\varphi} - \tilde{\Sigma}_a(0)]^2} = \pm Z \sqrt{[\varepsilon + \Sigma_n(0)]^2 + [\Gamma_{\varphi} - \Sigma_a(0)]^2}.$$

• quantum critical point is marked by the crossing of the ABS: $E_0 = 0$

$$\Gamma_{\varphi} - \Sigma_a(0) = \pm [\varepsilon + \Sigma_n(0)]$$

(\pm sign reflects the electron-hole symmetry arepsilon
ightarrow -arepsilon)

- its position depends only on the model parameters and self-energy at zero
- unfortunately, this model always gives only two ABS energies, even in the π phase
- model can be systematically improved by considering more terms in the expansion:

$$\begin{aligned} ZG_n^{-1} &= -\frac{\tilde{\Sigma}_n'(0)}{2}\omega^2 + \omega - \tilde{\varepsilon} - \tilde{\Sigma}_n(0), \\ ZG_a^{-1} &= \frac{1}{2}\left(\frac{\tilde{\Gamma}_{\varphi}}{\Delta^2} - \tilde{\Sigma}_a''(0)\right)\omega^2 + \tilde{\Gamma}_{\varphi} - \tilde{\Sigma}_a(0) \end{aligned}$$

we get a 4th order equation for ABS energies, but two always lie above the gap: no help

- We need to supply our model with the real-frequency derivatives of the self-energy at zero
- 1. Can we use CT-HYB data?
- 2. Can we use effective models to provide self-energy?

Methods CT-HYB self-energy

- **•** CT-HYB gives us self-energy in imaginary Matsubara frequencies $\omega_n = (2n+1)\pi k_B T$
- ▶ analytic continuation $\omega_n \rightarrow \omega + i0$: problematic
- we don't need the whole self-energy, only the value and derivatives at $\omega = 0$ (all real)
- Cauchy-Riemann equations $(z = \omega + i\omega_n)$:

$$\frac{\partial \operatorname{Re} \Sigma_j(z)}{\partial \omega} = \frac{\partial \operatorname{Im} \Sigma_j(z)}{\partial \omega_n},$$
$$\frac{\partial \operatorname{Re} \Sigma_j(z)}{\partial \omega_n} = -\frac{\partial \operatorname{Im} \Sigma_j(z)}{\partial \omega}.$$

higher derivatives:

$$\frac{\partial^2 \operatorname{Re} \Sigma_j(z)}{\partial \omega^2} = -\frac{\partial^2 \operatorname{Re} \Sigma_j(z)}{\partial \omega_n^2},$$
$$\frac{\partial^3 \operatorname{Re} \Sigma_j(z)}{\partial \omega^3} = -\frac{\partial^3 \operatorname{Im} \Sigma_j(z)}{\partial \omega_n^3},$$
etc

- allow us to estimate the derivatives along real axis from imaginary-frequency data
- numerical derivative of stochastic function: requires high-quality QMC data

illustration: 2PT solution at T = 0:

Methods Generalized atomic limit (GAL)

- can we somehow employ the knowledge of the exact solution in the atomic limit?
- Iow-energy limit of the non-interacting Green function: non-interacting atomic model

$$G_0^{-1}(\omega) = \begin{pmatrix} \omega[1+s(\omega)] - \varepsilon & \Delta_{\varphi}(\omega) \\ \Delta_{\varphi}(\omega) & \omega[1+(\omega)] + \varepsilon \end{pmatrix} = Z^{-1} \begin{pmatrix} \omega - \tilde{\varepsilon} & \tilde{\Gamma}_{\varphi} \\ \tilde{\Gamma}_{\varphi} & \omega + \tilde{\varepsilon} \end{pmatrix} + \mathcal{C}(\omega)$$

 $Z^{-1} = (1 + \Gamma / \Delta), \quad \tilde{\varepsilon} = Z \varepsilon, \quad \tilde{\Gamma}_{\varphi} = Z \Gamma_{\varphi}$

it corresponds to non-interacting atomic Hamiltonian

$$\tilde{\mathcal{H}}_{0,\infty} = \tilde{\varepsilon} \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} - \left(\tilde{\Gamma}_{\varphi} f_{\uparrow}^{\dagger} f_{\downarrow}^{\dagger} + \mathsf{H.c.} \right)$$

we know the exact solution for the interacting problem: let us add the interaction part:

$$\tilde{\mathcal{H}}_{\infty} = \tilde{\varepsilon} \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} - \left(\tilde{\Gamma}_{\varphi} f_{\uparrow}^{\dagger} f_{\downarrow}^{\dagger} + \text{H.c.} \right) + \tilde{U} \Big(f_{\uparrow}^{\dagger} f_{\uparrow} - 1/2 \Big) \Big(f_{\downarrow}^{\dagger} f_{\downarrow} - 1/2 \Big)$$

this way we could replace the exact self-energy by the scaled self-energy in the atomic limit

$$\Sigma(\omega; \Delta, \varphi, \varepsilon, \Gamma, U) \approx Z^{-1} \Sigma_{\infty}(\omega; \Delta, \varphi, \tilde{\varepsilon}, \tilde{\Gamma}, \tilde{U})$$

 \blacktriangleright problem: we don't know the relation between U and \tilde{U}

Methods Generalized atomic limit (GAL)

- can we somehow employ the knowledge of the exact solution in the atomic limit?
- Iow-energy limit of the non-interacting Green function: non-interacting atomic model

$$G_0^{-1}(\omega) = \begin{pmatrix} \omega[1+s(\omega)] - \varepsilon & \Delta_{\varphi}(\omega) \\ \Delta_{\varphi}(\omega) & \omega[1+(\omega)] + \varepsilon \end{pmatrix} = Z^{-1} \begin{pmatrix} \omega - \tilde{\varepsilon} & \tilde{\Gamma}_{\varphi} \\ \tilde{\Gamma}_{\varphi} & \omega + \tilde{\varepsilon} \end{pmatrix} + \mathcal{C}(\omega)$$

 $Z^{-1}=(1+\Gamma/\Delta),\quad \tilde{\varepsilon}=Z\varepsilon,\quad \tilde{\Gamma}_{\varphi}=Z\Gamma_{\varphi}$

it corresponds to non-interacting atomic Hamiltonian

$$\tilde{\mathcal{H}}_{0,\infty} = \tilde{\varepsilon} \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} - \left(\tilde{\Gamma}_{\varphi} f_{\uparrow}^{\dagger} f_{\downarrow}^{\dagger} + \mathsf{H.c.} \right)$$

we know the exact solution for the interacting problem: let us add the interaction part:

$$\tilde{\mathcal{H}}_{\infty} = \tilde{\varepsilon} \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} - \left(\tilde{\Gamma}_{\varphi} f_{\uparrow}^{\dagger} f_{\downarrow}^{\dagger} + \text{H.c.} \right) + \tilde{U} \Big(f_{\uparrow}^{\dagger} f_{\uparrow} - 1/2 \Big) \Big(f_{\downarrow}^{\dagger} f_{\downarrow} - 1/2 \Big)$$

this way we could replace the exact self-energy by the scaled self-energy in the atomic limit

$$\Sigma(\omega; \Delta, \varphi, \varepsilon, \Gamma, U) \approx Z^{-1} \Sigma_{\infty}(\omega; \Delta, \varphi, \tilde{\varepsilon}, \tilde{\Gamma}, \tilde{U})$$

> problem: we don't know the relation between U and \tilde{U}

Methods Generalized atomic limit (GAL)

▶ hint: the leading order asymptotics of the GAL Green function w/o the correction C:

$$G_{0}(\omega) = Z \begin{pmatrix} \omega - \tilde{\varepsilon} & \tilde{\Gamma}_{\varphi} \\ \tilde{\Gamma}_{\varphi} & \omega + \tilde{\varepsilon} \end{pmatrix}^{-1} = \frac{Z}{\omega} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \mathcal{O}(\omega^{-2})$$

it describes particles with non-cannonical anticommutation relations:

$$\{d_{\alpha}, d_{\beta}^{\dagger}\} = \mathsf{Z}\delta_{\alpha\beta}$$

i.e., quasiparticle with weight $Z=(1+\Gamma/\Delta)^{-1}\leq 1$

▶ we can formally rescale the operators so they obey standard commutation relations:

$$f_{\alpha} = \sqrt{Z}d_{\alpha}, \qquad f_{\alpha}^{\dagger} = \sqrt{Z}d_{\alpha}^{\dagger}$$

and we obtain an atomic model with correct asymptotic behavior:

$$\tilde{\mathcal{H}}_{\infty} = \tilde{\varepsilon} \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} - \left(\tilde{\Gamma}_{\varphi} f_{\uparrow}^{\dagger} f_{\downarrow}^{\dagger} + \text{H.c.} \right) + \tilde{U} \Big(f_{\uparrow}^{\dagger} f_{\uparrow} - 1/2 \Big) \Big(f_{\downarrow}^{\dagger} f_{\downarrow} - 1/2 \Big)$$

this 'hand-waving' argument gives us a recipe how to rescale the parameters:

$$Z^{-1} = (1 + \Gamma/\Delta), \quad \tilde{\varepsilon} = Z\varepsilon, \quad \tilde{\Gamma}_{\varphi} = Z\Gamma_{\varphi}, \quad \tilde{U} = Z^2U$$

 \blacktriangleright the band correction ${\cal C}$ corrects the asymptotic behavior of the GAL Green function

Methods Generalized atomic limit

how good is this approximation?

• we compare
$$\Sigma(\omega; \Delta, \varphi, \varepsilon, \Gamma, U)$$
 vs. $Z^{-1}\Sigma_{\infty}(\omega; \Delta, \varphi, Z\varepsilon, Z\Gamma, Z^2U)$

We have two options how to feed our low-energy model with self-energy:

- CT-HYB self-energy
- atomic limit with properly rescaled parameters

Methods Generalized atomic limit

- how good is this approximation?
- we compare $\Sigma(\omega; \Delta, \varphi, \varepsilon, \Gamma, U)$ vs. $Z^{-1}\Sigma_{\infty}(\omega; \Delta, \varphi, Z\varepsilon, Z\Gamma, Z^2U)$

We have two options how to feed our low-energy model with self-energy:

- CT-HYB self-energy
- atomic limit with properly rescaled parameters

▶ interaction strength U is usually the largest energy scale $(U \sim 10\Delta)$

▶ we compare the CT-HYB and GAL results w.r.t. 'numerically exact' NRG data half-filling, $\varphi = 0$, $\Gamma = \Delta$: $\Gamma = 2\Delta$:

Results Effect of the band correction C'

- band correction C contains all the higher terms of the expansion of the hybridization terms $s(\omega)$ and $\Delta_{\varphi}(\omega)$
- results of GAL with/without the correction vs NRG:

such correction is important:

- \blacktriangleright keeps the ABS energies below Δ
- guarantees the exact solution for U = 0
- restores the continuous part of the spectral function and provides the correct asymptotics for the Green function
- corrects the behavior of the Josephson current (1)

▶ CPU time in CT-HYB simulation scales as $t_c \sim T^{-2}$ - low-T region is inaccessible

we should look into the convergence w.r.t. decreasing temperature

- ABS energy changes slowly below $k_B T \sim 0.1\Delta$, very little below $k_B T \sim 0.05\Delta$
- slight systematic disagreement between CT-HYB and QMC (below 2%) at low-T
- ▶ integral values (e.g. induced pairing $\nu = \langle d_{\downarrow} d_{\uparrow} \rangle$) match remarkably well (up to four decimal places)
- ABS energy from NRG is *T*-independent (1), CT-HYB predicts the change in agreement with some other results (2-3)
- (1) R. Žitko, Phys. Rev. B 93, 195125 (2016).
- (2) C. Liu, Y. Huang, Y. Chen, and C. S. Ting, Phys. Rev. B 99, 174502 (2019).
- (3) V. Janiš and J. Yan, AIP Adv. 12, 035139 (2022).

Results Effect of local energy level

- GAL without corrections does not provide reasonable results away from half-filling
- a correction to the value of the energy level ε was obtained by fitting the 'numerically exact' NRG data (1)

(1) A. Kadlecová, M. Žonda, V. Pokorný, and T. Novotný, Phys. Rev. Applied 11, 044094 (2019).

Results The fate of the second pair of ABS

- low-energy model cannot describe the second pair of ABS in the π (doublet) phase
- how big problem is that?

phase diagram in the $\Gamma - U$ plane:

φ = 0: second pair of ABS is bound to low values of Γ and U, far from experimental regime
 φ > 0: second pair of ABS is always present, but approaches the gap edge

- we introduced two methods to calculate the ABS energies of a superconducting quantum dot system:
- Iow-energy model + CT-HYB self-energy:
 - ✓ reliable method which circumvents the need for analytic continuation of noisy Green function
 - can be straightforwardly utilized for more complex setups (multi-level dots, multi-dot, multi-terminal setups)
 - X bound to lower values of the interaction strength
 - **X** does not provide all ABS energies in the π phase
 - **x** requires high-quality QMC data: computationally expensive
- generalized atomic limit:
 - ✓ fast (seconds on a standard PC), simple, provides a reasonable solution in the almost whole parameter space
 - works well also for double quantum dot systems (1)
 - problematic away from half-filling without ad-hoc corrections (MGAL)
 - ✗ the correct form of the interaction part not yet known (work in progress)
- both these methods can be used as solvers for superconducting dynamical mean-field theory
- GAL can be generalized to non-equilibrium situations (e.g., microwave response)

- we introduced two methods to calculate the ABS energies of a superconducting quantum dot system:
- Iow-energy model + CT-HYB self-energy:
 - ✓ reliable method which circumvents the need for analytic continuation of noisy Green function
 - can be straightforwardly utilized for more complex setups (multi-level dots, multi-dot, multi-terminal setups)
 - X bound to lower values of the interaction strength
 - **X** does not provide all ABS energies in the π phase
 - ✗ requires high-quality QMC data: computationally expensive
- generalized atomic limit:
 - ✓ fast (seconds on a standard PC), simple, provides a reasonable solution in the almost whole parameter space
 - ✓ works well also for double quantum dot systems (1)
 - x problematic away from half-filling without ad-hoc corrections (MGAL)
 - **X** the correct form of the interaction part not yet known (work in progress)
- both these methods can be used as solvers for superconducting dynamical mean-field theory
- GAL can be generalized to non-equilibrium situations (e.g., microwave response)

- we introduced two methods to calculate the ABS energies of a superconducting quantum dot system:
- Iow-energy model + CT-HYB self-energy:
 - ✓ reliable method which circumvents the need for analytic continuation of noisy Green function
 - can be straightforwardly utilized for more complex setups (multi-level dots, multi-dot, multi-terminal setups)
 - X bound to lower values of the interaction strength
 - **X** does not provide all ABS energies in the π phase
 - **X** requires high-quality QMC data: computationally expensive
- generalized atomic limit:
 - ✓ fast (seconds on a standard PC), simple, provides a reasonable solution in the almost whole parameter space
 - ✓ works well also for double quantum dot systems (1)
 - ✗ problematic away from half-filling without ad-hoc corrections (MGAL)
 - **X** the correct form of the interaction part not yet known (work in progress)
- both these methods can be used as solvers for superconducting dynamical mean-field theory
- GAL can be generalized to non-equilibrium situations (e.g., microwave response)

Conclusions

acknowledgments:

- T. Novotný, M. Žonda (MFF UK, Prague, CZ)
- P. Zalom (FZÚ AVČR, Prague, CZ)
- G. Loukeris, J. Bätge (Uni Freiburg, DE)

computer resources:

- Czech National Grid Infrastructure MetaCentrum
- IT4Innovations National Supercomputing Center, Ostrava

reading:

- ▶ V. Pokorný and M. Žonda, arXiv:2209.11868.
- M. Žonda, P. Zalom, T. Novotný, G. Loukeris, J. Bätge, and V. Pokorný, arXiv:2211.10312

Thank you for your attention.

Conclusions

acknowledgments:

- T. Novotný, M. Žonda (MFF UK, Prague, CZ)
- P. Zalom (FZÚ AVČR, Prague, CZ)
- G. Loukeris, J. Bätge (Uni Freiburg, DE)

computer resources:

- Czech National Grid Infrastructure MetaCentrum
- IT4Innovations National Supercomputing Center, Ostrava

reading:

- ▶ V. Pokorný and M. Žonda, arXiv:2209.11868.
- M. Žonda, P. Zalom, T. Novotný, G. Loukeris, J. Bätge, and V. Pokorný, arXiv:2211.10312

Thank you for your attention.