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Motivation

I Nanoscopic superconducting junctions
I Magnetic molecules on superconductors

CNT: carbon nanotube, PTM: polychlorotriphenylmethyl, Pc: phthalocyanine
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Introduction superconducting impurity systems

I simplest model: single-level quantum dot connected to BCS superconducting leads

I parameters:
• quantum dot: local energy ε and Coulomb interaction strength U
• leads: gap width ∆ and phase difference ϕ = ϕL − ϕR

• coupling: tunneling rates Γα = π|Vα|2ρα, α = L,R
I typical values for nanowire junctions:

• ∆ = 100− 1000µeV (150µeV for Al, 400µeV for NbTiN, 2.15meV for NbSe2. . . )
• U ∼ 10∆ - dominant energy scale
• Γ ∼ ∆ (typically, but varies much between setups)
• ϕ ∈ (0, 2π) can be tuned by magnetic flux in SQUID setups, zero otherwise

I most of the properties are governed by the behavior of the in-gap, Andreev bound states
(ABS) (also known as Yu-Shiba-Rusinov, YSR states)

E. J. H. Lee et al., Nat. Nano. 9, 79 (2014).

I crossing of the Andreev bound states at the Fermi energy: singlet-doublet (0− π) impurity
quantum phase transition
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Introduction superconducting Anderson impurity model

I such system can be often reliably described using superconducting Anderson impurity model

H = Hd +
∑
α

(Hαc +Hαhyb), α = L,R

I single-level quantum dot (w/o magnetic field)

Hd = ε
∑
σ

d†σdσ + U
(
d†↑d↑ − 1/2

)(
d†↓d↓ − 1/2

)
(local energy shifted by U/2 so ε = 0 corresponds to a half-filled impurity)

I superconducting leads

Hαc =
∑
kσ
εkc
†
αkσcαkσ −∆

∑
k

(e iϕα c†αk↑c
†
α−k↓ + H.c.)

∆e iϕα = g〈cα−k↓cαk↑〉 is the (complex) BCS order parameter
I coupling terms

Hαhyb = −
∑
kσ

(Vαkc
†
αkσdασ + H.c.), Γα = π|Vα|2ρα

V. Meden, J. Phys. Condens. Matter 31, 163001 (2019).

D. J. Luitz, F. F. Assaad, T. Novotný, C. Karrasch, and V. Meden, Phys. Rev. Lett. 108, 227001 (2012).
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Introduction superconducting atomic limit

I simple model but qualitatively correct, can illustrate the basic physics
I infinite superconducting gap, ∆→∞ after we take the infinite-bandwidth limit (otherwise

we decouple the leads and end up with a trivial model)
I exactly solvable atomic model (4× 4 matrix in |0〉, |↑〉, |↓〉, |↑↓〉 basis)

H∞ = ε
∑
σ

d†σdσ −
(

Γϕd†↑d
†
↓ + H.c.

)
+ U

(
d†↑d↑−1/2

)(
d†↓d↓−1/2

)
where Γϕ = ΓLe

iϕL + ΓRe
iϕR

I spectrum consists of two spin-singlets and one spin-doublet

I crossing of the ABS states at the Fermi energy marks the singlet-doublet (0− π) impurity
quantum phase transition at U = 2

√
Γ2
ϕ + ε2.
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Methods superconducting Anderson impurity model

solvers for the superconducting Anderson impurity model
I diagrammatic expansion techniques (Hartree-Fock, second-order PT. . . ) - fast and simple,

but bound to the singlet (0) phase only
I effective models (superconducting atomic limit, zero bandwidth limit) - often qualitatively

correct, but quantitatively off (even by orders of magnitude)
I numerical renormalization group (NRG) - usually the method of choice for one or two

correlated levels, cannot be employed for more complicated systems
I CT-HYB quantum Monte Carlo - flexible method, can be employed for various geometries

and multi-dot setups, but
• formulated in imaginary-time formalism - dynamical sign problem prohibits real-time

implementations (exceptions exist, i.e., the inchworm algorithm)
• bound to finite temperatures (kBT & 0.01∆)
• no direct access spectral functions / Andreev bound state energies

I Can we obtain the ABS energies from CT-HYB QMC without analytic continuation?
I Is it possible to modify the effective models to give quantitatively reasonable solutions?
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Methods Analytic continuation of stochastic QMC data

I CT-HYB Green function is calculated in imaginary time, no direct access to spectral
functions/ABS frequencies

I analytic continuation iτ → ω of noisy data is an ill-defined problem (there is an infinite
number of spectral functions A(ω) which correspond to the same noisy G(τ)

I G(τ) is surprisingly insensitive to small changes in A(ω)
I inverse problem: solve an integral equation for A(ω) (direct problem A(ω)→ G(τ) is easy)

G(τ) =
∫

dω
e−τω

1 + e−βω
A(ω)

I usual approach: Bayesian inference, e.g., maximum entropy method (1)
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I lesson from the superconducting atomic limit: the low-energy (|ω| < ∆) part of the spectral
function (i.e., Andreev bound states) dictates most of the properties of these systems

I we might not need the whole spectral function

(1) M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).
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Methods Low-energy model

I interacting Green function

G−1(ω) = G−1
0 (ω)−Σ(ω) =

(
ω[1+s(ω)]− ε− Σn(ω) ∆ϕ(ω)− Σa(ω)

∆ϕ(ω)− Σa(ω) ω[1+s(ω)] + ε + Σ∗n (−ω)

)
I we expand the ω-dependent terms around ω = 0 (Fermi energy):

s(ω) =
Γ
∆

+
Γ

2∆3 ω
2 +O(ω4), ∆ϕ(ω) = Γϕ +

Γϕ
2∆2 ω

2 +O(ω4),

Σj (ω) = Σj (0) + ω
∂Σj

∂ω

∣∣∣
0

+ ω
2 1

2
∂2Σj

∂ω2

∣∣∣
0

+O(ω3), j = n, a

I low-energy model: non-interacting atomic limit with renormalized parameters + correction
for incoherent states C(ω) (Σ̃j (0) is just a real number)

G−1(ω) = Z−1
(
ω − ε̃− Σ̃n(0) Γ̃ϕ − Σ̃a(0)

Γ̃ϕ − Σ̃a(0) ω + ε̃ + Σ̃n(0)

)
+ C(ω) = Z−1[G̃−1(ω) + C̃(ω)]

I renormalization factor: renormalized parameters:

Z =
(

1 +
Γ
∆
−
∂Σn

∂ω

∣∣∣
0

)−1
, ε̃ = Zε, Γ̃ϕ = ZΓϕ, Σ̃(0) = ZΣ(0)
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Methods Low-energy model

I ABS energies: poles of the Green function, zeros of det G−1(ω):

E0 = ±
√

[ε̃ + Σ̃n(0)]2 + [Γ̃ϕ − Σ̃a(0)]2 = ±Z
√

[ε + Σn(0)]2 + [Γϕ − Σa(0)]2.

I quantum critical point is marked by the crossing of the ABS: E0 = 0

Γϕ − Σa(0) = ±[ε + Σn(0)]

(± sign reflects the electron-hole symmetry ε→ −ε)
I its position depends only on the model parameters and self-energy at zero
I unfortunately, this model always gives only two ABS energies, even in the π phase
I model can be systematically improved by considering more terms in the expansion:

ZG−1
n = −

Σ̃′′n (0)
2

ω
2 + ω − ε̃− Σ̃n(0),

ZG−1
a =

1
2

(
Γ̃ϕ
∆2 − Σ̃′′a (0)

)
ω

2 + Γ̃ϕ − Σ̃a(0)

we get a 4th order equation for ABS energies, but two always lie above the gap: no help
I We need to supply our model with the real-frequency derivatives of the self-energy at zero
I 1. Can we use CT-HYB data?
I 2. Can we use effective models to provide self-energy?
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Methods CT-HYB self-energy

I CT-HYB gives us self-energy in imaginary Matsubara frequencies ωn = (2n + 1)πkBT
I analytic continuation ωn → ω + i0: problematic
I we don’t need the whole self-energy, only the value and derivatives at ω = 0 (all real)

I Cauchy-Riemann equations (z = ω + iωn):

∂ Re Σj (z)
∂ω

=
∂ Im Σj (z)
∂ωn

,

∂ Re Σj (z)
∂ωn

= −
∂ Im Σj (z)

∂ω
.

I higher derivatives:

∂2 Re Σj (z)
∂ω2 = −

∂2 Re Σj (z)
∂ω2

n

,

∂3 Re Σj (z)
∂ω3 = −

∂3 Im Σj (z)
∂ω3

n

,

etc . . .

I allow us to estimate the derivatives along
real axis from imaginary-frequency data

I numerical derivative of stochastic function:
requires high-quality QMC data

illustration: 2PT solution at T = 0:
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Methods Generalized atomic limit (GAL)

I can we somehow employ the knowledge of the exact solution in the atomic limit?
I low-energy limit of the non-interacting Green function: non-interacting atomic model

G−1
0 (ω) =

(
ω[1+s(ω)]− ε ∆ϕ(ω)

∆ϕ(ω) ω[1+(ω)] + ε

)
= Z−1

(
ω − ε̃ Γ̃ϕ

Γ̃ϕ ω + ε̃

)
+ C(ω)

Z−1 = (1 + Γ/∆), ε̃ = Zε, Γ̃ϕ = ZΓϕ
I it corresponds to non-interacting atomic Hamiltonian

H̃0,∞ = ε̃
∑
σ

f †σ fσ −
(

Γ̃ϕf †↑ f
†
↓ + H.c.

)
I we know the exact solution for the interacting problem: let us add the interaction part:

H̃∞ = ε̃
∑
σ

f †σ fσ −
(

Γ̃ϕf †↑ f
†
↓ + H.c.

)
+ Ũ

(
f †↑ f↑−1/2

)(
f †↓ f↓−1/2

)
I this way we could replace the exact self-energy by the scaled self-energy in the atomic limit

Σ(ω; ∆, ϕ, ε, Γ,U) ≈ Z−1Σ∞(ω; ∆, ϕ, ε̃, Γ̃, Ũ)

I problem: we don’t know the relation between U and Ũ
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Methods Generalized atomic limit (GAL)

I hint: the leading order asymptotics of the GAL Green function w/o the correction C:

G0(ω) = Z

(
ω − ε̃ Γ̃ϕ

Γ̃ϕ ω + ε̃

)−1

=
Z

ω

(1 0
0 1

)
+O(ω−2)

I it describes particles with non-cannonical anticommutation relations:

{dα, d
†
β} = Zδαβ

i.e., quasiparticle with weight Z = (1 + Γ/∆)−1 ≤ 1
I we can formally rescale the operators so they obey standard commutation relations:

fα =
√
Zdα, f †α =

√
Zd†α

and we obtain an atomic model with correct asymptotic behavior:

H̃∞ = ε̃
∑
σ

f †σ fσ −
(

Γ̃ϕf †↑ f
†
↓ + H.c.

)
+ Ũ

(
f †↑ f↑−1/2

)(
f †↓ f↓−1/2

)
I this ’hand-waving’ argument gives us a recipe how to rescale the parameters:

Z−1 = (1 + Γ/∆), ε̃ = Zε, Γ̃ϕ = ZΓϕ, Ũ = Z 2U

I the band correction C corrects the asymptotic behavior of the GAL Green function
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Methods Generalized atomic limit

I how good is this approximation?
I we compare Σ(ω; ∆, ϕ, ε, Γ,U) vs. Z−1Σ∞(ω; ∆, ϕ, Zε, ZΓ, Z 2U)

Γ = 0.6∆, ϕ = 0, half-filling (Σn(0) = U/2), no mag. field (∂Σa/∂ω|0 = 0)
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We have two options how to feed our low-energy model with self-energy:
I CT-HYB self-energy
I atomic limit with properly rescaled parameters
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Results Effect of interaction strength

I interaction strength U is usually the largest energy scale (U ∼ 10∆)
I we compare the CT-HYB and GAL results w.r.t. ’numerically exact’ NRG data

half-filling, ϕ = 0, Γ = ∆: Γ = 2∆:
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Results Effect of the band correction C

I band correction C contains all the higher terms of the expansion of the hybridization terms
s(ω) and ∆ϕ(ω)

I results of GAL with/without the correction vs NRG:
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such correction is important:
I keeps the ABS energies below ∆
I guarantees the exact solution for U = 0
I restores the continuous part of the spectral function and provides the correct asymptotics for

the Green function
I corrects the behavior of the Josephson current (1)

(1) V. Pokorný and M. Žonda, arXiv:2209.11868 (2022).
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Results Effect of temperature

I CPU time in CT-HYB simulation scales as tc ∼ T−2 - low-T region is inaccessible
I we should look into the convergence w.r.t. decreasing temperature
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I ABS energy changes slowly below kBT ∼ 0.1∆, very little below kBT ∼ 0.05∆
I slight systematic disagreement between CT-HYB and QMC (below 2%) at low-T
I integral values (e.g. induced pairing ν = 〈d↓d↑〉) match remarkably well (up to four decimal

places)
I ABS energy from NRG is T -independent (1), CT-HYB predicts the change in agreement

with some other results (2-3)

(1) R. Žitko, Phys. Rev. B 93, 195125 (2016).
(2) C. Liu, Y. Huang, Y. Chen, and C. S. Ting, Phys. Rev. B 99, 174502 (2019).

(3) V. Janǐs and J. Yan, AIP Adv. 12, 035139 (2022).
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Results Effect of local energy level

I GAL without corrections does not provide reasonable results away from half-filling
I a correction to the value of the energy level ε was obtained by fitting the ’numerically exact’

NRG data (1)
I results for Γ = ∆, U = 6∆, ϕ = 0:

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

(a)

0.0

0.1

0.2

0 0.5 1 1.5 2

0.0

0.2

0.4

0.6

0 1 2 3 4

(b)

0.25

0.50

0.75

1.00

0 1 2 3 4

(c)

0.00

0.05

0.10

0 1 2 3 4

(d)

-0.05

E
0
/∆

ε/∆

NRG, T = 0
CT-HYB, kBT/∆ = 0.1

0.05
0.033

MGAL+C

NRG

CT-HYB, 1 deriv.

2 deriv.

Z

ε/∆

n

ε/∆

ν

ε/∆

(1) A. Kadlecová, M. Žonda, V. Pokorný, and T. Novotný, Phys. Rev. Applied 11, 044094 (2019).
17 / 20



Results The fate of the second pair of ABS

I low-energy model cannot describe the second pair of ABS in the π (doublet) phase
I how big problem is that?

phase diagram in the Γ− U plane:
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I ϕ = 0: second pair of ABS is bound to low values of Γ and U, far from experimental regime
I ϕ > 0: second pair of ABS is always present, but approaches the gap edge
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Conclusions

I we introduced two methods to calculate the ABS energies of a superconducting quantum dot
system:

I low-energy model + CT-HYB self-energy:
4 reliable method which circumvents the need for analytic continuation of noisy Green

function
4 can be straightforwardly utilized for more complex setups (multi-level dots, multi-dot,

multi-terminal setups)
8 bound to lower values of the interaction strength
8 does not provide all ABS energies in the π phase
8 requires high-quality QMC data: computationally expensive

I generalized atomic limit:
4 fast (seconds on a standard PC), simple, provides a reasonable solution in the almost

whole parameter space
4 works well also for double quantum dot systems (1)
8 problematic away from half-filling without ad-hoc corrections (MGAL)
8 the correct form of the interaction part not yet known (work in progress)

I both these methods can be used as solvers for superconducting dynamical mean-field theory
I GAL can be generalized to non-equilibrium situations (e.g., microwave response)

(1) M. Žonda, P. Zalom, T. Novotný, G. Loukeris, J. Bätge, and V. Pokorný, arXiv:2211.10312 (2022).
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