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Failure of the Baym-Kadanoff construction to consistently match quantum dynamics
with thermodynamic critical behavior
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We disclose a serious deficiency of the Baym-Kadanoff construction of thermodynamically consistent con-
serving approximations. There are two vertices in this scheme: dynamical and conserving. The divergence of
each indicates a phase instability. We show that each leads to incomplete and qualitatively different behavior
at different critical points. The diagrammatically controlled dynamical vertex from the Schwinger-Dyson
equation does not obey the Ward identity and cannot be continued beyond its singularity. The standardly used
dynamical vertex alone cannot, hence, conclusively decide about the stability of the high-temperature phase.
On the other hand, the divergence in the conserving vertex, obeying the conservation laws, does not invoke
critical behavior of the spectral function and the specific heat. Moreover, the critical behavior of the conserving
vertex may become spurious in low-dimensional systems. Consequently, the description of the critical behavior
of correlated electrons becomes consistent and reliable only if the fluctuations of the order parameter in the
conserving vertex lead to a divergence coinciding with that of the dynamical one.
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I. INTRODUCTION

When the electron interaction energy is comparable with
the kinetic energy, the impact of electron correlations can-
not be treated perturbatively. Quantum dynamical fluctuations
overtake control of the low-temperature behavior of strongly
interacting electron systems. Consequently, critical phe-
nomena and cooperative behavior with diverging response
functions are expected. A reliable description of quantum dy-
namics with thermodynamic criticality is essential to interpret
experimental findings and to design and predict the behavior
of materials with the desired properties.

Unfortunately, exact solutions of strongly correlated elec-
tron systems exist only for particular models and specific
limiting cases. They are, nevertheless, paradigms of a con-
sistent description of quantum criticality. The most important
exact solutions of the low-temperature critical behavior are
those of the single-impurity Anderson model (SIAM) [1,2],
the Kondo model [3,4], and the Hubbard model in one spa-
tial dimension [5,6]. In particular, the exact solution of the
charge and spin-symmetric state of the SIAM offers a com-
plete description of the low-temperature quantum criticality
with the critical point at T = 0 and U = ∞. A dimensionless
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Kondo scale a controls the critical asymptotics at U → ∞
with ln a = −π2Uρ0/8, where ρ0 is the density of states at
the Fermi energy. This scale, defining a distance to the critical
point, can be obtained from three functions: the inverse zero-
temperature magnetic susceptibility χ , the linear coefficient
of the specific heat γ , and the width of the quasiparticle peak
of the spectral function [7]. Any consistent theory of critical
behavior must deliver the same Kondo scale, at least quali-
tatively, whatever definition we use. In particular, the Wilson
ratio must be restricted as R = χ/γ ∈ (1, 2).

With the lack of exact solutions, one needs a way to
construct consistent approximations. Baym and Kadanoff
set a framework for deriving thermodynamically consistent
conserving approximations encompassing quantum dynami-
cal fluctuations nonperturbatively [8,9]. The construction is
based on the Luttinger-Ward functional, from which both
one-particle self-energy and two-particle-irreducible vertices
can be derived via functional derivatives. The Baym-Kadanoff
scheme is, however, self-consistent only for the one-particle
functions; no two-particle vertices explicitly enter the generat-
ing Lutinger-Ward functional. A two-particle self-consistency
was added to the Baym-Kadanoff scheme by Dominicis and
Martin by including two-particle vertices [10–12].

Dynamical fluctuations at intermediate coupling and low
temperatures drive the system to criticality with divergent
two-particle vertices. Critical behavior in quantum many-
body systems can be reached either by enhanced quantum
fluctuations due to the noncommutativity of the opera-
tors of kinetic energy and interaction or by breaking the
system’s linear response to external forces. Quantum dy-
namics is contained in the self-energy determined from the
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Schwinger-Dyson equation. Quantum fluctuations enter the
Schwinger-Dyson equation via a dynamical two-particle ver-
tex. Thermodynamic critical behavior is determined from the
divergence of response functions and is accompanied by the
emergence of symmetry-breaking order parameters. Response
functions must be determined from two-particle vertices de-
rived from the self-energy via a functional Ward identity and
a Bethe-Salpeter equation to match the emergence of order
parameters with the divergence in response functions [8].

The problem is that the two-particle vertex from the
Schwinger-Dyson equation does not obey the Ward iden-
tity in any known approximate solution, and its divergence,
hence, cannot be attributed to a thermodynamic critical be-
havior of conserving response functions [13,14]. We hence
have two ways to identify critical behavior in the Baym-
Kadanoff construction. Quantum dynamical criticality is
deduced from the divergence in the dynamical vertex enter-
ing the Schwinger-Dyson equation, and the thermodynamic
one from the diverging conserving vertex leading to response
functions satisfying macroscopic conservation laws. The real
critical behavior is unique, and so the dynamical and con-
serving vertices must be identical in the exact solution to the
quantum many-body problem [15,16]. The existing two ways
to match the single self-energy and the two-particle vertex in
systems with correlated fermions make the definition of crit-
ical behavior in the Baym-Kadanoff construction ambiguous.
Although this dichotomy was disclosed early, it has not yet
been considered a severe problem.

The two two-particle vertices derived from a single self-
energy do not presently lead to the same critical behavior
in any approximate scheme. We recently suggested an alter-
native approach to resolve this dichotomy in the theoretical
description of critical behavior. We used a single two-particle
irreducible vertex from the diverging Bethe-Salpeter equa-
tion to generate approximations with uniquely defined critical
points [17]. Consequently, we obtained two self-energies
for the given two-particle vertex. We separated the self-
energy with even and odd symmetry with respect to the
symmetry-breaking field determining the critical point in
the Bethe-Salpeter equation. The even self-energy obeys
the dynamical Schwinger-Dyson equation, and the odd one,
generalizing the order parameter, is matched with a two-
particle-irreducible vertex via a linearized Ward identity. We
obtained a unique critical behavior, but a difference between
the dynamical and conserving vertices still remained.

The aim of this paper is to demonstrate that the existence
of two divergent vertices in approximate theories is a se-
vere problem hindering the application of standard tools to
describe critical behavior. The divergence in the Schwinger-
Dyson equation and the divergence of the response functions
lead to critical behavior at different critical points and set in-
compatible criteria for the stability of thermodynamic phases.
Moreover, neither of the divergences individually determines
the full and thermodynamically consistent critical behavior.
The divergence in the Schwinger-Dyson equation is respon-
sible for the critical behavior of the spectral function and
the density of states, while the divergence of the response
functions leads to the emergence of order parameters. The
divergence-free dynamical vertex from the Schwinger-Dyson
equation cannot then be used as a criterion for the stability

of thermodynamic phases unless confirmed by a nondiverging
conserving vertex.

The layout of the paper is as follows. We introduce the
thermodynamic functional generating approximations in the
Baym-Kadanoff theory with the dynamical and conserving
vertices in Sec. II. Qualitative differences between the crit-
ical behavior of the dynamical and conserving vertices are
demonstrated on the elementary self-consistent approximate
schemes in Sec. III. We explicitly demonstrate the incom-
patibility of the stability criteria derived from the dynamical
and conserving vertices on the SIAM in the strong-coupling
Kondo limit within the fluctuation-exchange (FLEX) approx-
imation in Sec. IV. Discussion and conclusions are presented
in Sec. V. We added two appendices with supporting calcula-
tions and formulas.

Although our explicit calculations were, for simplicity,
done for a specific self-consistent dynamical approximation
in the single-impurity model, the conclusions are general and
hold for any approximation in the Baym-Kadanoff scheme,
including the dynamical mean-field theory [18], its ab initio
extensions [19], or its parquet extensions with the two-particle
self-consistency [20,21].

II. BAYM-KADANOFF CONSTRUCTION: DYNAMICAL
AND CONSERVING VERTICES

The self-energy, the one-particle irreducible vertex, is
standardly used as a generator of quantum many-body
approximations. However, one needs the corresponding ther-
modynamic functional connecting the heat effects with the
external forces comprised in the self-energy. It exists for
the so-called �-derivable approximations in the form of the
Luttinger-Ward functional �[U ; G] with the bare interaction
U and the renormalized one-particle propagator G. Such
approximations are thermodynamically consistent and obey
macroscopic conservation laws with appropriately defined
conserving vertices. The generating thermodynamic func-
tional of the Baym-Kadanoff scheme with the spin-dependent
self-energy �σ and the one-particle Green’s function Gσ can
be represented on a regular lattice as follows:

1

N
W [�, G] = �[U ; G] −

∑
σ=±1

1

β

∞∑
n=−∞

1

N

∑
k

× {eiωn0+
ln [iωn + μσ − ε(k) − �σ (k, iωn)]

+ Gσ (k, iωn)�σ (k, iωn)}, (1)

where N is the number of lattice sites, β = 1/kBT , ωn =
(2n + 1)πkBT are fermionic Matsubara frequencies, and ε(k)
is the lattice dispersion relation. We denoted μσ = μ + σh,
with μ the chemical potential and h the external Zeeman
magnetic field. We further resort to single-orbital models with
a local Hubbard interaction U in the tight-binding description.

The equilibrium states are determined from thermody-
namic functional W [�, G] via stationarity with respect to
variations of complex variables �σ (k, iωn) and Gσ (k, iωn).
The first stationarity condition δW [�, G]/δ�(k, ωn) = 0
leads to the Dyson equation Gσ (k, iωn) = [iωn + μσ −
ε(k) − �σ (k, iωn)]−1. The second stationarity equation de-
termines the self-energy that can be represented in the form
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FIG. 1. Diagrammatic representation of the Schwinger-Dyson
Eq. (2) with the horizontal electron-hole propagation  with a con-
serving transfer bosonic momentum q and frequency νm = 2mπkBT .
Arrows indicate the charge propagation; the electron propagates from
left to right while the hole from right to left. We abbreviated inde-
pendent integration variables in this integral equation k = (k, iωn),
q = (q, iνm ).

of the Schwinger-Dyson equation:

�σ [U ; G] = δ�[U ; G]

δGσ

= U 〈Gσ̄ 〉

− UGσ Gσ̄  �∗
σ σ̄ [U ; G] ◦ Gσ̄ . (2)

The angular brackets denote the normalized sum over
the fermionic Matsubara frequencies and momenta, 〈X 〉 =
(βN )−1 ∑

ωn,k X (k, iωn). Symbols  and ◦ represent two-
particle and one-particle convolutions in a specific scattering
channel propagating the singlet electron-hole pairs with σ̄ =
−σ , respectively. The Schwinger-Dyson equation is repre-
sented diagrammatically in Fig. 1. It separates the two-particle
contribution from the one-particle one to the self-energy.
The two-particle contribution is convolution of the electron-
hole propagator Gσ Gσ̄  = (βN )−1 ∑

k,ωn
Gσ (k, iωn)Gσ̄ (k +

q, iωn + iνm) and the one-particle irreducible singlet electron-
hole vertex �∗.

Vertex �∗ can further be decomposed by introducing a
two-particle vertex �∗ irreducible with respect to the singlet
electron-hole propagation. We then obtain a Bethe-Salpeter
equation in the singlet electron-hole channel:

�∗
σ σ̄ [U ; G] = �∗

σ σ̄ [U ; G] − �∗
σ σ̄ [U ; G]Gσ Gσ̄  �∗

σ σ̄ [U ; G].

(3)

Vertex �∗
σ σ̄ is a sum of all diagrams that cannot be discon-

nected by simultaneously cutting electron and hole lines; it
is the electron-hole irreducible vertex. In this respect, this
vertex is fully diagrammatically controlled and is used to
generate dynamical approximations in the Baym-Kadanoff
self-consistent scheme.

It is important to mention that vertex �∗ is not directly
derived from the generating thermodynamic functional of
Eq. (1). It was derived from a specific representation of the
self-energy in the form of the Schwinger-Dyson equation. It
hence does not guarantee conservation laws and sum rules.
The irreducible vertex �σσ̄ [U ; G] should be connected in the
conserving theory with the self-energy via a functional Ward
identity [9]:

�W
σ σ̄ [U ; G] = δ�σ [U ; G]

δGσ̄

. (4)

It is the two-particle irreducible vertex derived as a sec-
ond variational derivative from the Luttinger-Ward functional.
When used in the corresponding Bethe-Salpeter equation, we

obtain the conserving vertex �σσ̄ [U ; G]. The dynamical vertex
�∗

σ σ̄ from the Schwinger-Dyson and Bethe-Salpeter equations,
Eqs. (2) and (3), should equal the conserving one, �σσ̄ from
the Bethe-Salpeter equation with the conserving irreducible
vertex �W

σ σ̄ in the exact theory. That is, �∗[U ; G] = �[U ; G].
This cannot, however, be achieved in accessible approximate
treatments.

Consistency between the one- and two-particle functions
in the Baym-Kadanoff construction with the generating self-
energy functional �[G] is guaranteed if the functional Ward
identity, Eq. (4), is obeyed and the full vertex is represented
via the Bethe-Salpeter equation (3). On the other hand, the
Schwinger-Dyson equation determines the self-energy being
the sum of all Feynman diagrams and is the complete di-
agrammatic solution of the many-body perturbation theory.
To guarantee equality �∗[U ; G] = �[U ; G], the two-particle
irreducible vertex �σσ̄ must comply with another integral
equation with its functional derivative when Eq. (3) is inserted
in Eq. (2):

�W
σ σ̄ = �∗

σ σ̄ = U − U [1 + Gσ Gσ̄�∗
σ σ̄ ]−1

× Gσ

{
�∗

σ σ̄ + Gσ̄

δ�∗
σ σ̄

δGσ̄

}
[1 + Gσ Gσ̄ �∗

σ σ̄ ]−1 ◦ Gσ̄ .

(5)

It is evident that Eqs. (4) and (5) cannot be obeyed
simultaneously with approximate irreducible functions and
�∗[U ; G] 	= �[U ; G]. To keep the approximation for the self-
energy from Eq. (2) conserving, one has to treat vertex �∗ as
an auxiliary function and to give the physical meaning only to
vertex � from the Bethe-Salpeter Eq. (3) with the irreducible
vertex �W

σ σ̄ from Eq. (4). This is, however, possible only up
to a critical point, the divergence in the auxiliary vertex �∗. It
happens if

Min Sp[�∗GG](Q, 0) = −1 (6)

for a given momentum Q determining the symmetry to be
broken beyond this critical point. One cannot continue the ap-
proximation beyond the critical point unless the Ward identity
is obeyed, at least to the extent that would guarantee that the
critical point in the vertex function �∗ introduces a symmetry
breaking and the continuous emergence of an order parameter
in the self-energy. The problem is, however, that the two
vertex functions � and �∗ in the �-derivable approximate the-
ories lead to two different critical points that should coincide
in the exact solution. This conclusion does not depend on the
way we reached the electron-hole irreducible vertex �∗

σ σ̄ since
its functional derivative in Eq. (5) generates new Feynman
diagrams not contained in it [13]. Equality �∗ = �W , that is,
obeying Eq. (5), is beyond the reach of the diagrammatically
controlled approximate schemes. The only feasible possibility
is to select a starting irreducible vertex �(0) and iterate the
consistency Eq. (5) successively. The difference between the
critical behavior of vertices � and �∗ is not removed in this
iterative scheme.

III. CONSERVING VERTEX IN APPROXIMATE SCHEMES

We explicitly demonstrate the difference between the dy-
namical and conserving vertices on simple approximations.

075171-3



JANIŠ, POKORNÝ, AND KOS PHYSICAL REVIEW B 109, 075171 (2024)

We start with the simplest, static Hartree-Fock approximation.
Its Luttinger-Ward functional is

�HF[U ; G] =U
∑

σ

1

βN

∑
k

∑
ωn

eiωn0+
Gσ (k, iωn)

× 1

βN

∑
p

∑
ωl

eiωl 0+
Gσ̄ (p, iωl ). (7)

The self-energy is a number �σ = Unσ̄ . The dynamical vertex
�∗ = 0 is easily deduced from the corresponding Schwinger-
Dyson equation. The conserving vertex, on the other hand,
is nontrivial with �W = U , as easily found from Eq. (4). That
is why the Hartree-Fock static mean-field approximation leads
to a thermodynamic mean-field critical behavior. It contains
no quantum dynamics.

The Hartree-Fock approximation is a weak-coupling static
solution missing the quantum fluctuations due to the non-
commutativity of the Hamiltonian of the kinetic energy
and the interaction Hamiltonian. The next step beyond the
static approximation is FLEX [13,22–24], where we use
the bare interaction as the two-particle irreducible vertex in
the Schwinger-Dyson equation, �∗ = U . The corresponding
Luttinger-Ward functional reads

�FLEX[U ; G] = 1

2

∑
σ

1

βN

∑
q

∑
νm

ln[1 + Uφσσ̄ (q, iνm)],

(8)

where we introduced a singlet electron-hole bubble:

φσσ̄ (q, iνm) = 1

βN

∑
k

∑
ωn

Gσ (k, iωn)Gσ̄ (k + q, iωn + iνm).

(9)

Notice the symmetry of this bubble: φσ̄σ (q, iνm) =
φσσ̄ (−q,−iνm).

The Schwinger-Dyson equation for the self-energy

�σ (k, iωn) = U

βN

∑
p

∑
ωl

eiωl 0+
Gσ̄ (p, iωl ) − U 2

βN

∑
q

∑
νm

× φσσ̄ (q, iνm)Gσ̄ (k + q, iωn + iνm)

1 + Uφσσ̄ (q, iνm)
(10)

contains a nontrivial dynamical vertex �∗ that may become
divergent. According to Eq. (6), it happens if Uφ(Q, 0) = −1
for an appropriate vector Q determining the type of the mag-
netic instability.

The real magnetic instability is, however, determined from
the divergence of the magnetic susceptibility, χ = dm/dh
evaluated at h = 0. The magnetic susceptibility depends then
on the derivative of the self-energy as χ = −∑

σ σ 〈G2(1 −
d�σ/dh)〉. To evaluate this derivative, we need to use the con-
serving irreducible vertex �W in the FLEX approximation. It
is

�W
σ σ̄ (k, iωn, k′, iωn′ ; q, iνm) = δ�σ (k, iωn)

δGσ̄ (k + q, iωn + iνm)

= U

1 + Uφσσ̄ (q, iνm)
− U 2

βN

∑
Q

∑
νl

Gσ (k + q − Q, iωn + iνm−iνl )Gσ̄ (k + Q, iωn+iνl )

[1 + Uφσσ̄ (Q, iνl )]2 . (11)

The critical point for this irreducible vertex is
found as the minimum eigenvalue of a matrix
�W

σ σ̄ (k, iωn, k′, iωn′ ; Q, 0)Gσ (k′, iωn′ )Gσ̄ (k′ + Q, iωn′ ) in
variables k, iωn and k′, iωn′ for a specific vector Q. To
determine the susceptibility, we also need to evaluate the
triplet irreducible vertex δ�σ/δGσ . It compensates the second
term on the right-hand side of Eq. (11) in the susceptibility of
the spin-symmetric solution.

The difference between the dynamical and conserving ir-
reducible vertices is qualitative. The dynamical irreducible
vertex is a number, the bare interaction U , while the conserv-
ing irreducible vertex �W is a potentially divergent function
in the strong-coupling regime. It is indeed the case, as we
demonstrate on a generic example of the SIAM in the strong-
coupling Kondo regime.

IV. SINGLE IMPURITY ANDERSON
MODEL: KONDO SCALES

The strong-coupling regime of the single impurity Ander-
son model at half filling is the simplest situation for testing
the consistency of approximate solutions of critical behavior.
The exact spin-symmetric solution is stable for all inter-
action strengths with an exponentially small Kondo scale.

Consistent approximations should deliver the same critical
Kondo scale in the magnetic susceptibility, spectral function,
and specific heat when approaching zero temperature and
infinite interaction strength. Each thermodynamic quantity
can then be used for finding the stability criterion of the
high-temperature, spin-symmetric solution. The static Hartree
approximation predicts instability of the spin-symmetric solu-
tion in the strong-coupling regime. On the other hand, FLEX
approximations lead to a stable spin-symmetric solution at any
interaction strength when deduced from the dynamical vertex.
This conclusion is not, however, confirmed by the conserving
vertex.

A. Self-energy in the FLEX approximation

The SIAM contains only local quantum dynamics with
Matsubara frequencies as the only dynamical variables. The
dispersion relation is replaced in this model by energy �,
forming a gap around the real axis for the Matsubara frequen-
cies. The full Green’s function of the SIAM is

Gσ (iωn) = 1

i(ωn + sign(ωn)�) + μ̄ + σ h̄ − �σ (iωn)
,

(12a)
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where we used the solution of the Hartree approximation with
charge and spin densities n and m, respectively. We denoted
h̄ = h + Um/2 and μ̄ = μ − Un/2.

The Schwinger-Dyson equation analytically continued to
real frequencies for the SIAM is

�σ (ω) = − U 2
∫ ∞

−∞

dx

π

{
b(x)Im

[
φ(x)

1 + Uφ(x)

]
Gσ̄ (ω + x)

− f (ω + x)
φ∗(x)ImGσ̄ (ω + x)

1 + Uφ∗(x)

}
, (12b)

where the electron-hole bubble has the following
representation:

φ(ω) = −1

2

∑
σ

∫ ∞

−∞

dω

π
f (ω)

× [Gσ (ω + x) + Gσ (ω − x)]ImGσ̄ (x). (13)

The frequency variables in the above and all following ex-
pressions are taken as the limit from the upper complex
half-plane, ω = ω + i0+, x = x + i0+, and φ∗ is complex
conjugate.

This approximation is equivalent to the renormalized
random phase approximation (RRPA) or the ladder approx-
imation introduced by Suhl [25]. It was used to analyze
the local magnetic moments’ behavior and to calculate the
magnetic susceptibility [26]. Due to the one-particle self-
consistency, the dynamical vertex of the RRPA, singlet ladder
approximations or FLEX suppresses the Hartree instability.
Hamann derived their strong-coupling asymptotics [27]. The
Kondo scale calculated from the dynamical vertex appeared
to be ln a = −(Uρ0)2/3. It differs from the exact result but
shares with it the same critical point at T = 0 and Uc = ∞.
We disclosed that the difference in the critical asymptotics
is due to the lack of a two-particle self-consistency [20].
We restored the correct linear dependence of the logarithm
of the Kondo scale on the interaction strength via reduced
parquet equations for the two-particle-irreducible vertex in the
electron-hole scattering channel [14,17,28–30].

The improper usage of the dynamical vertex, which does
not obey the Ward identity, to determine thermodynamic
stability was pointed out in the literature [31,32]. It was
recognized early that the magnetic susceptibility contains ad-
ditional diagrams not included in the dynamical vertex [26].
It is, however, tricky to derive the full expression for the
susceptibilities calculated from the conserving vertex where
uncontrolled Feynman diagrams from the functional deriva-
tive of the self-energy must be added to the dynamical vertex
[13]. That is why the dynamical vertex defined via a con-
trolled sum of explicitly selected Feynman diagrams has been
used to evaluate both the self-energy and the response func-
tions in the self-consistent approximations [18,23,33–40]. The
situation does not improve even if we extend the Luttinger-
Ward functional by two-particle vertex functions via the De
Dominicis-Martin scheme, leading to a parquet construction
[11,12,20,21,41,42].

B. Quantum criticality: Polar approximation

The FLEX or RRPA of the SIAM allows us to evaluate
the conserving vertex, at least in the strong-coupling Kondo

limit, explicitly. We use the asymptotic form of the solution
for the spin-polarized self-energy of the SIAM in the strong-
coupling limit as in Refs. [27,28]. Since the divergence of
the dynamical vertex is a nonintegrable singularity in the
Schwinger-Dyson equation, the exact strong-coupling limit
can be obtained from the leading low-frequency asymptotics
of the dynamical vertex, the so-called polar approximation
[28]. To check the stability of the spin-symmetric solu-
tion of FLEX in the strong-coupling regime and to obtain
the magnetic susceptibility, we use the polar approximation,
asymptotically exact in the Kondo regime. It is characterized
by a magnetic Kondo scale near the magnetic instability.
Only if the Kondo scales from the dynamical and conserving
vertices behave qualitatively in the same way is the thermody-
namic critical behavior consistent with quantum dynamics.

We set T = 0 and take the limit U → ∞ of the half-filled
SIAM to reach the Kondo critical behavior. The pole of the
dynamical vertex of the RRPA emerges when the Kondo scale
in the denominator of the dynamical vertex at zero transfer
frequency a = 1 + Uφ(0) → 0, where φ(ω) is the singlet
electron-hole bubble, φ(0) = − ∫ 0

−∞ dω�[G↑(ω)G↓(ω)]/π .
Since the integral in the Schwinger-Dyson equation is log-
arithmically infrared divergent, only low frequencies in the
dynamical vertex deliver the dominant contribution to the
self-energy. The one-particle Green’s function is analytic in
complex frequencies ω, and we can set the integration vari-
able of the Schwinger-Dyson equation x = 0 in it. We thus
turn the integral equation for the self-energy algebraic in
the one-electron variables with separate two-particle integrals
[28]:

Re�σ (ω) = −U 2ReGσ̄ (ω)
∫ ∞

−∞

dx

π
b(x)Im

[
φ(x)

1 + Uφ(x)

]

+U 2ImGσ̄ (ω)
∫ ∞

−∞

dx

π
f (ω + x)

× Re

[
φ(x)

1 + Uφ(x)

]
, (14a)

Im�σ (ω) = −U 2ImGσ̄ (ω)
∫ ∞

−∞

dx

π
(b(x) + f (ω + x))

× Im

[
φ(x)

1 + Uφ(x)

]
. (14b)

These algebraic equations for the real and imaginary parts
of the self-energy deliver the exact solution of the FLEX
approximation in the leading order in the vanishing Kondo
scale a → 0. We can approximate the electron-hole bubble
in the dynamical vertex in this limit by its low-frequency
asymptotics,

φ(ω)
.= φ(0) − iφ′ω, (15)

with φ′ = πρ2
0 independent of the interaction strength and ρ0

the bare density of states.
Equations (14) deliver the correct strong-coupling asymp-

totics of the dynamical self-energy. They can be extended
outside this limit. Their solution obeys the Fermi-liquid prop-
erties at low temperatures, and the algebraic approximation
can be used as a suitable interpolation between the weak
and strong couplings of the SIAM. To extend qualitatively
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correctly the algebraic approximation to the weak-coupling
regime U → 0, we need to introduce a high-frequency cutoff
� in the two-particle integrals. The cutoff does not affect the
diverging part of the integral and the critical behavior in the
strong-coupling limit.

The explicit integrations of the two-particle contribution to
the self-energy are presented in Appendix A. The resulting
algebraic equations for the real and imaginary parts of the self-
energy read

Re�±(ω) = 1

πφ′

{
ln

√
1 + U 2φ′2�2

a2
ReG∓(ω)

+ (1 − a) arctan

(
Uφ′ω

a

)
ImG∓(ω)

}
, (16a)

Im�±(ω) = 1

πφ′ ln

√
1 + U 2φ′2ω2

a2
ImG∓(ω), (16b)

where subscript ± refers to the spin variable σ = ±1.

C. Solution of the polar approximation

We derive the solution of the polar approximation for ar-
bitrary interaction strength. We introduce new variables for
convenience and simplification of the expressions and set
� = 1, X (ω) = −Re�(ω), and Y (ω) = −Im�(ω):

S(ω) = ω + X (ω), (17a)

T (ω) = 1 + Y (ω), (17b)

Z (ω)2 = S(ω)2 + T (ω)2, (17c)

l� = ln
√

1 + Ū 2�2, (17d)

A(ω) = (1 − a) arctan(Ūω), (17e)

L(ω) = ln
√

1 + Ū 2ω2, (17f)

where we used a rescaled interaction strength Ū = U/πa.
The equations for functions T (ω) and S(ω) read

T (ω) = Z (ω)2

Z (ω)2 − L(ω)
, (18a)

S(ω) = T (ω)
ω(Z (ω)2 − L(ω)) + A(ω)

Z (ω)2 + l�
. (18b)

Substituting these two equations in Eqs. (17), we obtain an
algebraic equation for the square norm of the inverse Green’s
function Z (ω)2,

Z (ω)2 = 1

(1 − L(ω)/Z (ω)2)2

{
1 + ω2

× [1 − (L(ω) − Ā(ω))/Z (ω)2]2

(1 + l�/Z (ω)2)2

}
, (19)

where we denoted Ā(ω) = A(ω)/ω.
We use Ū = U/πa and 1/a as independent variables. The

interaction enters Eqs. (17) only as Ū and the resulting equa-
tion for 1/a then is

1

a
= 1 − 2Ū

∫ 0

−∞
dω

ω(Z (ω)2 − L(ω) + Ā(ω))

(Z (ω)2 − L(ω))2(Z (ω)2 + l�)
. (20)

Consequently, variable ω enters functions Z (ω), L(ω), and
A(ω) only as powers of its square, that is, ω2 becomes the
elementary variable.

It can be easily demonstrated that the polar approximation
leads to Fermi liquid in weak coupling. The algebraic equa-
tions for the self-energy can be solved numerically for any
interaction strength. Before we do so, we first assess its weak
and strong coupling limits that can be obtained analytically.
We use the weak-coupling solution to fix the integration cutoff
� = �. We choose it to fit the weak-coupling value of the
derivative d�(ω)/dω at ω = 0 to best reproduce the Fermi-
liquid regime. The weak-coupling asymptotics are obtained
from the limit of the Kondo scale a → 1.

The fundamental Eq. (19) for the square of the inverse
Green’s function linearizes in the weak coupling to

Z (ω)2 = ω2 + 1 + 2
L(ω) − (l� − Ā(ω))ω2

ω2 + 1
. (21)

Its solution in the leading order a → 1 has the following input
on its right-hand side:

L(ω) = U 2ω2

2π2
, (22a)

l� = U 2�2

2π2
, (22b)

Ā(ω) = U 2

π2
. (22c)

The real and imaginary parts of the inverse Green’s function
in this limit are

S(ω) = ω

[
1 − l� − Ā(ω)

ω2 + 1

]
, (23a)

T (ω) = 1 + L(ω)

ω2 + 1
. (23b)

Evaluating the derivative d�(ω)/dω in this approximation
and comparing it with second-order perturbation theory, we
obtain (see Appendix B1)

dX (ω)

dω

∣∣∣∣
ω=0

= U 2

π2

(
1 − �2

2

)
≈ 0.533

U 2

π2
, (24)

from which the cutoff is

� ≈ 0.967. (25)

The strong-coupling solution corresponds to the limit a →
0 and 1/a � �. It is the limit where the polar approximation
asymptotically reaches the full solution of the convolutive
Schwinger-Dyson equation. The equations for functions X (ω)
and Y (ω) simplify in the strong-coupling limit and in the
linear order of the magnetic field to

X+(ω) = −
[
| ln a|ReG−(ω) + π

2
sign(ω)ImG−(ω)

]
, (26)

Y (ω) = − ln

√
1 + U 2ω2

a2
ImG(ω). (27)

The dependence on the cutoff frequency � vanishes, as ex-
pected. The solution for the Kondo scale a → 0 obeys the
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FIG. 2. Real part of the self-energy calculated for three interaction strengths, U = 2, 4, 6 with � = � = 1. We compared two solutions,
the full convolutive equation, Eq. (12b) (dashed curves), and the self-energy from the polar approximation, Eqs. (16) (solid curves).

following equation in the strong-coupling limit:

1 = 4U

π
√| ln a|

∫ 1

0
dxx

√
1 − x2 = 4U

3π
√| ln a| . (28)

Its solution is

a = exp

{
−16U 2

9π2

}
. (29)

See Appendix B2 for the detailed derivation. The power of the
interaction strength in the logarithm of the Kondo scale agrees
with Hamann’s result [27].

The numerical solution of Eqs. (16) was obtained on a
standard PC via a Python code utilizing the SCIPY library.
Equation (19) was solved via a standard root finding technique
using the Krylov approximation for inverse Jacobian as imple-
mented in the SCIPY.OPTIMIZE.ROOT function. Equation (20)
was then solved by using a simple iteration technique. We
tested the polar approximation for several interaction strength
values and compared the resulting self-energy with the full
convolutive solution. We plotted the real and imaginary self-
energy in Figs. 2 and 3 for U = 2, 4, 6 standing for weak,
intermediate, and strong coupling. We can see that the polar
approximation fits the convolutive solution quite accurately
for low frequencies near the Fermi energy for all interaction
strengths. Notice that the polar self-energy grows from zero
slower in weak coupling and faster in strong coupling. The
polar approximation contains fewer fluctuations in weak cou-
pling than the convolutive one and approaches strong coupling
faster than the convolutive solution. We can conclude that
the algebraic approximation reproduces the solution of the
full integral Schwinger-Dyson equation for the self-energy

quite well in the whole range of the interaction strength. The
agreement with the convolutive solution in the spectral func-
tion is acceptable, in particular, close to the Fermi energy, see
Fig. 4. The two solutions slightly differ for higher frequencies
ω � � where neither displays the satellite Hubbard bands.
The algebraic solution approaches the strong coupling regime
faster than the full convolutive one since it overestimates
the impact of the diverging dynamical fluctuations from the
critical region, where it becomes asymptotically exact.

We also compared the Kondo scale from the dynamical
vertex a = 1 + Uφ(0) with the half-width of the quasiparticle
peak taken at half maximum of the spectral function calcu-
lated in the polar approximation and the convolutive solution
(FLEX) with � = � = 1 in Fig. 5. The half-width of the
quasiparticle peak is bigger in the polar approximation than
in the full convolutive solution for U � 5.65 and smaller for
larger values, which can also be seen in Fig. 4. The two
scales differ in weak coupling, far from the Kondo regime,
but approach each other in the strong-coupling limit.

D. Magnetic susceptibility

The dynamical vertex suppresses the unphysical diver-
gence of the RPA and predicts a stable spin symmetric
solution for all temperatures and interaction strengths. We
now check this conclusion on the magnetic susceptibility in
the FLEX and RRPA. Since only the limit to strong coupling
matters, it is sufficient to use the polar approximation. We
evaluate the magnetic solution only to the linear order in the
magnetic field.

FIG. 3. Imaginary part of the self-energy for the full solution and the polar approximation. The setting is the same as in Fig. 2.
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FIG. 4. Spectral function at zero temperature calculated with the
FLEX self-energy, blue curves, compared with the approximate one
from Eq. (16), red curves, in weak and intermediate coupling. The
cutoff frequency was chosen: � = � = 1.

Notice that the singlet electron-hole bubble is an even func-
tion of the magnetic field h; thus, its derivative with respect
to h does not enter the linear susceptibility. The divergence
in the magnetic susceptibility is controlled by the magnetic
Kondo scale am = χ0/χ with the magnetic susceptibility of
the noninteracting system χ0.

Using the symmetry of the magnetic solution, namely,
∂X

∂h
≡ ∂X+

∂h
= −∂X−

∂h
, (30a)

∂Y

∂h
≡ ∂Y+

∂h
= −∂Y−

∂h
, (30b)

we obtain the necessary derivatives of the real and imaginary
parts of the self-energy:

∂X

∂h
=

{[(
1 + U

2
πχ

)
+ ∂X

∂h

]
∂

∂ω
+ ∂Y

∂h

∂

∂Y

}

× l�(ω + X ) − A(1 + Y )

(ω + X )2 + (1 + Y )2 , (31a)

∂Y

∂h
= −

{[(
1 + U

2
πχ

)
+ ∂X

∂h

]
∂

∂ω
+ ∂Y

∂h

∂

∂Y

}

× L
1 + Y

(ω + X )2 + (1 + Y )2 . (31b)

We skipped the frequency variables in functions that are
not differentiated with respect to frequency.

We further introduce the following notation:

R = S2 − T 2

(S2 + T 2)2 , (32a)

P = 2ST

(S2 + T 2)2 . (32b)

The solution for the derivative of the dynamical self-energy is

∂X

∂h
=

(
1 + U

2
πχ

)[
(1 + LR)

(1 + LR)2 + l�LP2 − AP
− 1

]
,

(33a)
∂Y

∂h
=

(
1 + U

2
πχ

)
LP

(1 + LR)2 + lLP2 − AP
. (33b)

Inserting the representations for R and P into this solution, we
obtain

∂X

∂h
=

(
1 + U

2
πχ

)

×
[
−1 + (S2 + T 2)2[(S2 + T 2)2 + L(S2 − T 2)]

[(S2 + T 2)2 + L(S2 − T 2)][(S2 + T 2)2 + l�(S2 − T 2) − 2AST ] + 2LST [2l�ST + A(S2 − T 2)]

]
, (34a)

∂Y

∂h
=

(
1 + U

2
πχ

)
2LST (S2 + T 2)2

[(S2 + T 2)2 + L(S2 − T 2)][(S2 + T 2)2 + l�(S2 − T 2) − 2AST ] + 2LST [2l�ST + A(S2 − T 2)]
.

(34b)

The magnetic susceptibility at zero temperature is

πχ = 2
∂

∂h

∫ 0

−∞
dω

1 + Y+(ω)

(ω + h̄ + X+(ω))2 + (1 + Y+(ω))2

= 2

(
1 + U

2
πχ

)∫ 0

−∞
dω

{(
1 + ∂X

∂ h̄

)
∂

∂ω
+ ∂Y

∂ h̄

∂

∂Y

}
1 + Y

(ω + X )2 + (1 + Y )2 . (35)

Inserting Eqs. (34) into the above expression, we obtain an explicit solution:

πχ

2 + Uπχ
= −2

∫ 0

−∞
dω

S(ω)T (ω)

[(S(ω)2 + T (ω)2)2 + (L(ω) + l�)(S(ω)2 − T (ω)2) + l�L(ω)] − 2A(ω)S(ω)T (ω)
. (36)

We further rewrite the equation for the magnetic suscepti-
bility to

πχ = 2I

1 − UI
, (37)

where I is the integral from the right-hand side of Eq. (36).
The Kondo scale from the magnetic susceptibility is

am = 1 − UI. (38)
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FIG. 5. The zero-temperature dimensionless Kondo scale a =
1 + Uφ(0) compared with the half-width at half maximum of the
quasiparticle peak (hwhm) in the full convolutive solution (FLEX,
dashed curves) and the polar approximation (solid curves).

We plotted the two Kondo scales a and am in Fig. 6 as func-
tions of the interaction strength. We compared their values
for a few choices of the cutoff frequency �. The smaller
the cutoff frequency, the sooner the strong-coupling regime
with a critical point is reached. But whatever cutoff fre-
quency is chosen, there is always a finite critical interaction
Uc at which am = 0 and the magnetic susceptibility diverges.
The Kondo scale from the dynamical vertex only slightly
depends on the cutoff and reaches its critical value a = 0
at Uc = ∞.

The susceptibility from the algebraic equation for the
self-energy differs from the result derived from the convolu-
tive Schwinger-Dyson equation. It asymptotically approaches,
however, the exact FLEX value in the strong-coupling limit
where it has the following explicit representation expressed

FIG. 6. The Kondo scale a from the dynamical vertex, red
curves, and the magnetic Kondo scale am = χ0/χ , blue curves, plot-
ted for different values of the cutoff �; χ0, χ are zero-temperature
bare and full susceptibilities calculated from Eq. (36). The black
solid line is the Hartree solution. Notice that only the magnetic scale
depends on the cutoff.

in terms of the logarithm of the Kondo scale l = | ln a| (see
Appendix B2),

πχ

2 + Uπχ
= − 1√

l
P

∫ 1

0
dx

√
1 − x2

x − π
4l

√
1 − x2

. (39a)

χSC = 2

π

ln
(

4
π
| ln a|)

1 − 3π
4 ln

(
4
π
| ln a|) . (39b)

It is negative in the limit a → 0. Inserting the asymptotic
solution for the Kondo scale, Eq. (29), we obtain a criti-
cal interaction Uc ≈ 3.3� for the magnetic instability. Since
the polar approximation becomes asymptotically exact in the
strong-coupling limit, the full susceptibility calculated from
the conserving vertex of the convolutive solution becomes in-
finite at a finite value of the interaction strength. Therefore, the
spin-symmetric state of the self-consistent approximations be-
comes unstable at a finite interaction strength Uc < ∞ when
determined from the conserving vertex. The critical interac-
tion for the magnetic instability obtained from the algebraic
approximation sets a lower bound for the actual instability.
What holds exactly is that the magnetic susceptibility of
the spin-symmetric solution becomes negative in the strong-
coupling regime.

V. CONCLUSIONS: STABILITY
OF APPROXIMATE SOLUTIONS

The Baym-Kadanoff scheme with the Luttinger-Ward
functional is the canonical way to build thermodynami-
cally consistent and conserving approximations of correlated
fermions. It is fully self-consistent in the one-electron func-
tions, self-energy, and Green’s function that are uniquely
defined. Two-particle and higher-order functions can be de-
rived only indirectly, and there are two ways to connect them
with the one-particle self-energy. The straightforward way
to introduce the two-particle vertex is the Schwinger-Dyson
equation that singles out the two-particle contribution to the
self-energy. This equation represents the complete solution
of the perturbation theory and is, hence, diagrammatically
fully controlled. The conserving character of the solutions
is, however, not automatically guaranteed by the Schwinger-
Dyson equation. Another equation, Ward identity, matching
the two-particle irreducible vertex with the self-energy must
be obeyed. The result is an integral equation with a functional
derivative, Eq. (5), that is equivalent to the full solution of
the Schwinger field theory. The dynamical and conserving
vertex are not equal in approximate solutions. This difference
becomes a severe problem for determining the stability of
solutions and identifying the true critical behavior.

We used the simplest dynamical approximation with
critical behavior to demonstrate the generic deficiency of ap-
proximate solutions within the Baym-Kadanoff construction:
the dynamical vertex from the Schwinger-Dyson equation and
the conserving one do not lead to the same critical behav-
ior. The dynamical vertex is diagrammatically derivable and
controllable and sets the quality of the approximations. The
conclusion about the stability of the spin-symmetric state is
unreliable when judged only from the dynamical vertex. The
conserving vertex must be used to confirm the conclusion
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drawn from the dynamical vertex. The conserving vertex
contains, however, additional Feynman diagrams beyond
those from the dynamical one that are difficult to control
[13,26]. That is why the conserving vertex is rarely used to
determine the stability of high-temperature solutions.

The existence of different critical points in the dynamical
and conserving vertex is an artifact of approximations. This
difference is standardly resolved by picking the divergence
in the conserving vertex that comes first and identifying it as
the real one. The conserving vertex does not, however, enter
any self-consistent equation and, hence, it is not forced to
comply with restrictions such as the Mermin-Wagner theo-
rem. The critical behavior of the conserving vertex is reliable
only at sufficiently high temperatures where quantum fluctu-
ations do not play an important role and a thermodynamic
mean-field description is sufficient. Decreasing the temper-
ature increases the impact of quantum fluctuations, and the
lower the critical temperature, the less reliable the critical
behavior of the conserving vertex. The low-temperature criti-
cal behavior is significantly affected by quantum fluctuations
and should be determined from the dynamical vertex. It is
the case of all low-dimensional systems, d < 3. We demon-
strated it explicitly on an example of the SIAM where the
critical point of the dynamical vertex is in accord with the
exact solution at T = 0 and U = ∞ while the conserving
vertex leads to a spurious magnetic instability at intermedi-
ate coupling in a similar way as the Hartree static solution.
We hence showed that the dynamical vertex better repro-
duces the critical behavior than the one of the conserving
vertex in the low-dimensional systems with nonintegrable
singularity.

Thermodynamically consistent approximations must lead
to unique critical behavior so scaling arguments and the renor-
malization group can be applied beyond the mean field in
spatial dimensions d < 4. It means that the characteristic
scale vanishing at the critical point must be at least qual-
itatively the same whether determined from the dynamical
vertex (spectral function), conserving vertex (magnetization),
or the specific heat. The critical behavior in the specific heat
is related to the self-energy and the pole in the dynamical ver-
tex, but only if the full one-particle self-consistency is used.
Matching the critical behavior in the specific heat, the dynam-
ical and conserving vertices is possible only with full one-
and two-particle self-consistency. It is, however, unreach-
able with the existing approximate constructions. New ways
to match quantum dynamics and thermodynamic criticality
in the Baym-Kadanoff scheme must be devised. Although
complete consistency seems out of reach, at least qualitative
consistency between the critical behavior in thermodynamic
functions should be aimed at.

ACKNOWLEDGMENTS

V.P. was supported by Grant No. 23-05263K of the Czech
Science Foundation. Š.K. was supported by the project Quan-
tum materials for applications in sustainable technologies
(QM4ST), funded as Project No. CZ.02.01.01/00/22_-
008/0004572 by Programme Johannes Amos Commenius,
call Excellent Research.

APPENDIX A: LOW-TEMPERATURE INTEGRALS
IN THE POLAR APPROXIMATION OF SIAM

We replace the full frequency-dependent bubble with its
leading low-frequency terms,

φ(x)
.= φ0 − iφ′x, (A1)

where the real frequency x → x + i0+ is the limit from the
upper complex half plane. Since the SIAM is a local Fermi
liquid, φ′ = πρ2

0 = 1/π�2 independently of the interaction
strength. This low-frequency asymptotics gives the exact
leading logarithmic divergence. When we use this approx-
imation away from the critical point, we must introduce a
frequency cutoff �. It will affect only nonuniversal correc-
tions to the logarithmic divergence in the SDE. The cutoff
will be optimized to fit best the Fermi-liquid properties in the
weak-coupling limit.

The two-particle vertex in the SDE in this approximation
is

Im

[
φ(x)

1 + Uφ(x)

]
= −φ′x

a2 + U 2φ′2x2
, (A2)

Re

[
φ(x)

1 + Uφ(x)

]
= aφ0

a2 + U 2φ′2x2
. (A3)

The Kondo limit with vanishing of the Kondo scale a → 0
becomes critical at charge and the spin-symmetric case at zero
temperature. We can replace the integrals over the bosonic
and fermionic variables in the two-particle vertex in the low-
temperature critical region with∫ �

−�

dx

π
b(x)Im

[
φ(x)

1 + Uφ(x)

]
.= − 1

U 2πφ′ ln

√
1 + U 2φ′2�2

a2
,

(A4)∫ �

−�

dx

π
f (ω + x)Re

[
φ(x)

1 + Uφ(x)

]

.= − φ0

Uπφ′ arctan

(
Uφ′ω

a

)
, (A5)

∫ �

−�

dx

π
(b(x) + f (ω + x))Im

[
φ(x)

1 + Uφ(x)

]

.= − 1

U 2πφ′ ln

√
1 + U 2φ′2ω2

a2
. (A6)

We assume |ω| < � when the approximation is applied
outside the critical region. We utilized the symmetry of
the dynamical self-energy at half filling with Re�(ω) =
−Re�(−ω) and Im�(ω) = Im�(−ω) for real frequencies.
We used Uφ0 = (a − 1).

APPENDIX B: ASYMPTOTIC LIMITS
OF THE POLAR APPROXIMATION

1. Weak-coupling: Integration cutoff

It is necessary to choose the frequency cutoff since it is a
free parameter of the approximation outside the critical region
where the Kondo scale in weak coupling approaches one. We
choose the cutoff to fit the derivative dX (ω)/dω at ω = 0 of
the full solution to the second order of the interaction strength
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U . In this way, we reproduce the Fermi-liquid properties best.
We use the bare propagator and the bare electron-hole bubble
in the weak-coupling limit:

ReG(ω) + iImG(ω) = ω − i

ω2 + 1
(B1)

and

Reφ(x) = 1

π

∫ 0

−∞

dω

ω2 + 1

[
ω + x

(ω + x)2 + 1
+ ω − x

(ω − x)2 + 1

]

= −4 arctan(x) − x ln(1 + x2)

x(4 + x2)π
, (B2)

Imφ(x) = − 1

π

∫ 0

−∞

dω

ω2 + 1

×
[

1

(ω + x)2 + 1
− 1

(ω − x)2 + 1

]

= −2
x arctan(x) + ln(1 + x2)

x(4 + x2)π
. (B3)

The leading contribution to the derivative of the dynamical
self-energy at the Fermi level at zero temperature is

dX (ω)

dω

∣∣∣∣
ω=0

= U 2ImG(0)φ(0)

π
− U 2

∫ 0

−∞

dx

π

×
[

dReG(x)

dx
Imφ(x) + dImG(x)

dx
Reφ(x)

]

= U 2

π2
+ 2U 2

π2

∫ 0

−∞

dx

(1 + x2)2

×
[(

1 − x2
)x arctan(x) + ln

(
1 + x2

)
x(4 + x2)

+ 4 arctan(x) − x ln
(
1 + x2

)
(4 + x2)

]
≈ 0.533

U 2

π2
.

(B4)

2. Strong-coupling: Magnetic susceptibility

Using functions S(ω), T (ω), and Z (ω) in the Green’s func-
tion, defined in Eqs. (17) we obtain the following asymptotic
equations:

S(ω) = ω − lS(ω) − π
2 sign(ω)T (ω)

Z (ω)2
, (B5)

T (ω) = 1 + lT (ω)

Z (ω)2
, (B6)

where l = | ln a|. Their solution is

T (ω) = Z (ω)2

Z (ω)2 − l
, (B7)

S(ω) = ωZ (ω)2

Z (ω)2 + l
. (B8)

The equation for Z (ω)2 in the strong-coupling reduces to

[Z (ω)4 − l2]2 = Z (ω)2[(Z (ω)2 + l )2 + ω2(Z (ω)2 − l )2].

(B9)

If we substitute Z (ω) = ζ (ω)
√

l , then

l = ζ (ω)2

[
1

(ζ (ω)2 − 1)2 + ω2

(ζ (ω)2 + 1)2

]
. (B10)

In the next step, we represent the strong-coupling solution
in the leading order of small parameter 1/

√
l

ζ (ω)2 = 1 + α(ω)√
l

, (B11)

where α(ω) � √
l .

The equation for function α(ω) from Eq. (B9) is

l = l

α(ω)2
+ ω2

4
. (B12)

Introducing a new variable x = ω/2
√

l , we obtain

α(ω)2 = 1

1 − x2
. (B13)

The solution in the leading order of 1/
√

l is

Z (x) =
√

l, (B14)

T (x) =
√

l
√

1 − x2, (B15)

S(x) = x
√

l, (B16)

from which we obtain the equation for the Kondo scale in the
strong-coupling limit, Eq. (28).

We obtain the magnetic susceptibility in the strong cou-
pling Kondo limit by inserting the above solution into
Eq. (36),

πχ

2 + Uπχ
= −2

∫ 0

−∞
dω

S(ω)T (ω)

[(S(ω)2 + T (ω)2)2 + 2l (S(ω)2 − T (ω)2) + l2] + πS(ω)T (ω)
= 1√

l
P

∫ 1

0
dx

√
1 − x2

x − π
4l

√
1 − x2

,

(B17)

being Eq. (39a).
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