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r := r = (r1, r2, . . . rN) electron coordinates

R := R = (R1, R2, . . . RNA
) nuclear coordinates

T̂e = − h̄2

2me

∑N
i=1∆i kinetic energy operator electrons

T̂k = −h̄2

2

∑NA
A=1

1
MA

∆A kinetic energy operator nuclei

Vee =
∑N

i=1

∑N
j>i

e2

4πε0 rij
electron-electron repulsion (rij = |ri − rj|)

Vek = −
∑NA

A=1

∑N
i=1

ZA e2

4πε0 RiA
electron-nuclear attraction

Vkk =
∑NA

A=1

∑NA
B>A

ZAZB e2

4πε0 RAB
nuclear-nuclear repulsion

E total molecular energy

Ψ(r, R) total molecular wavefunction

(

T̂e + Vee + Vek + T̂k + Vkk

)

Ψ(r, R) = EΨ(r, R)

• Time-independent molecular Schrödinger equation

NA nuclei (masses MA, charges +ZAe, A = 1, . . . , NA)

N electrons (mass me, charge −e)

THE MOLECULAR SCHRÖDINGER EQUATION





T̂k + Vkk(R) + Ee(R)
︸ ︷︷ ︸

V (R)



Ψk(R) = EΨk(R)
E0

v

E1
v

R
R

V

0

R

V (R) = potential energy surface =⇒ molecular structure
Ψk = nuclear wavefunction, with Ψ = Ψk · Ψe

➋ A nuclear Schrödinger equation

(

T̂e + Vee + Vek

)

︸ ︷︷ ︸

Ĥe

Ψe(r;R) = Ee(R) Ψe(r;R)

Ee(R) = electronic energy (parametrically dependent on R)
Ψe(r;R) = electronic wavefunction (parametrically dependent on R)

➊ An electronic Schrödinger equation

• Born-Oppenheimer approximation, giving:

Electrons much faster than nuclei =⇒ separate nuclear from electronic motion =⇒

THE BORN-OPPENHEIMER APPROXIMATION



electronic
structure

based
wavefunction density

based

semi−
empirical

first
principles

DFT
Kohn−Sham

many−body
corrections

ab initio

Hartree−
Fock (HF)

post−HF

semi−
empirical

HMO, EHT, CNDO,
AM1, ....

CI, MPn, CASSCF, .... GW

LDA, GGA,
B3LYP, ....

EMT, EAM

Ĥe Ψe,n(r;R) = Ee,n(R) Ψe,n(r;R)

n = 0 (ground state), n > 0 (excited states)

ELECTRONIC STRUCTURE METHODS



Ee = Ee[ne(r)]

variational principle:

E
opt
e = minneEe[ne(r)]

=⇒ 3-dimensional variational problem!

Walter Kohn

• The “density” world

Ee = Ee[Ψe(r1, . . . , rN )] = 〈Ψe|Ĥe|Ψe〉

variational principle:

E
opt
e = minΨe

Ee[Ψe(r1, . . . , rN )]

=⇒ 3N-dimensional variational problem!

John Pople

• The “wavefunction” world

ELECTRONIC STRUCTURE METHODS



• N-electron wavefunctions: Slater determinants

Ψ (x1, . . . , xN) =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣

χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2)

...
... . . . ...

χ1(xN) χ2(xN) · · · χN(xN)

∣
∣
∣
∣
∣
∣
∣
∣

= |χ1(1), . . . , χN(N)〉

➊ antisymmetric ➋ Pauli principle ➌ normalized ➍ approximate

. Every Slater determinant represents an electron configuration, e.g. (1s22s22p2) for C

Example: H atom (atomic units)

ĥ(x1) = −1

2
∆1 −

1

r1
ψa(r1) = ψnlm(r1) = s, 2px, . . . orbitals

εa = εn = − 1

2n2
(n = 1, 2 . . . )

ĥ(x1) χa(x1) = εa χa(x1)

γ(ω) = α(ω) or β(ω)
ω = spin coordinate (±1/2 h̄)
x = (r, ω)

χ(x) = ψ(r)
︸︷︷︸
spatial

· γ(ω)
︸︷︷︸

spin function

• Orbitals: Eigenfunctions of 1-electron Hamiltonians

THE WAVEFUNCTION WORLD: WAVEFUNCTIONS



• Coupled single-electron equations, with Fock operator

f̂ (1) = −1

2
∆1 −

NA∑

A=1

ZA

r1A
+

N∑

b=1

(

Ĵb(1)
︸︷︷︸
Coulomb

− K̂b(1)
︸ ︷︷ ︸
exchange

)

︸ ︷︷ ︸

HF potential V̂ HF (1)

• Nonlinear equations =⇒ iterative (self consistent field, SCF) solution

• Self-interaction free

• Properties

• Use single determinant |Ψ0〉 = |χ1(1), . . . , χN(N)〉 as trial wavefunction for ground state

• Use full electronic Hamiltonian Ĥe

• Determine orbitals χi from variational principle EHF
0 = 〈Ψ0|Ĥe|Ψ0〉 = min!

=⇒ Hartree-Fock equations

f̂ (1) χi(1) = εHF
i χi(1) ; i = 1, 2, . . . , N

• The Hartree-Fock equations

THE WAVEFUNCTION WORLD: HARTREE-FOCK



➊ Slater functions: e−ζr

➋ Slater-type linear comb. of Gaussians: STO-3G, 6-31G∗, . . . ; cc-pVDZ, cc-pVTZ, . . .

➌ Plane waves: eikr, cutoff Vc = k2max /2

• Basis sets {φν}
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K∑

ν=1

Cνj Fµν
︸︷︷︸

〈φµ|f̂φν〉

= εj

K∑

ν=1

Cνj Sµν
︸︷︷︸
〈φµ|φν〉

closed- and open-shell variants

• Roothaan-Hall equations

Spatial orbitals (MOs) are expanded in a set of K “atomic orbitals” {φν} (AOs):

ψj(r) =

K∑

ν=1

Cνj · φν(r) ; ν = 1, 2, . . . , K

=⇒ linear variation problem for Cνj, εj

• LCAO-MO

THE ROOTHAAN-HALL METHOD: LCAO-MO



• Non-variational: Møller-Plesset perurbation theory (MP2, MP3, . . . )

• MCSCF and CASSCF (vary amplitudes and orbitals)

• Coupled Cluster (CC) methods: Ψ = exp(T̂1
︸ ︷︷ ︸

CCS

+T̂2

︸ ︷︷ ︸
CCSD

+ . . . T̂N) Ψ0

︸ ︷︷ ︸
Full CI

• Variants of CI-type methods
Ψ0 Ψ3

2 Ψ5
1

Ψ34
12

Ψ33
22

Ψ = D0Ψ0︸ ︷︷ ︸
HF

+

N∑

a=1

Nvirt∑

r=N+1

Dr
aΨ

r
a

︸ ︷︷ ︸
CI Singles

+

N∑

a<b

Nvirt∑

r<s

Drs
ab Ψ

rs
ab

︸ ︷︷ ︸
CI Singles Doubles

+ . . .N-excitations
︸ ︷︷ ︸

Full CI, FCI

➊ correlation energy

➋ excited states: HCIDn = En Dn

• Form of exact wavefunction and configuration interaction (CI) methods

METHODS TO TREAT ELECTRON CORRELATION



• single-particle equations (like HF), self-consistent solution

• contain electron correlation (unlike HF), exact if exchange-correlation functional exact

• n(r) =
∑N

i |ψs
i (r)|2; T =

∑N
i 〈ψs

i | − 1
2∆ψ

s
i 〉; τ (r) =

∑N
i
1
2|∇ψs

i (r)|2 (kin.-energy dens.)

• The Kohn-Sham equations






−1

2
∆−

NA∑

A=1

ZA

|r −RA|
+

∫
n(r′)

|r − r′| dr
′ +

δExc

δn︸︷︷︸

xc potential vxc(r)







ψs
i (r) = εsiψ

s
i (r)

➊ Ground state electronic energy E0 completely determined by electron density n(r):

E0[n(r)] = T [n]
︸︷︷︸

kin. en. el

+ Vke[n]
︸ ︷︷ ︸

nuc-el attr.

+ J [n]
︸︷︷︸

Coulomb el/el

+ Ẽxc[n]
︸ ︷︷ ︸

exchange-correlation

➋ Variational principle for densities

Eopt
0 = minnE0[n(r)]

• The Hohenberg-Kohn theorems

THE DENSITY WORLD: DFT



LDA, GGA, meta-GGA, hyper-GGA, . . .

• “Jacob’s ladder”: Systematically improvable DFT (?)

E.g.: EB3LYPxc = (1− a) ELDAx + aEexx + b∆EB88x + (1− c)ELDAc + cELYPc (a = 0.2)

• DFT with “exact” (HF-like) exchange Eex
x : Hybrid functionals

E.g.: NullNull (=Hartree); SNull (=Xα); SVWN (=LDA); BLYP, BP86 (both GGA)

type definition (A = Ex, Ec) exchange correlation

➊ Null A = 0 – –

➋ LDA A =

∫

a(n) n dr S VWN

➌ GGA A =

∫

a(n,∇n) n dr B88, PW91 P86, PW91, LYP

➍ meta-GGA A =

∫

a(n,∇n, τ ) n dr TPSS, BR, VSXC TPSS, B95, VSXC

LDA= Local Density Appr.; GGA= Generalized Gradient Appr.; a = energy per electron

• Levels of approximation: Exc = Ex + Ec

EXCHANGE-CORRELATION FUNCTIONALS



• Comparison to experiment

Method MAD max. AD
G2 1.6 8.2
G2(MP2) 2.0 10.1
SVWN 90.9 228.7
BLYP 7.1 28.4
B3LYP 3.1 20.1
B3PW91 3.5 21.8

G2-2; in kcal/mol; Jenssen (1999)

• Ionization potentials IP=−εHOMO

Atom HF LDA LDA-SIC exp.
H 13.6 7.3 13.6 13.6
Li 5.3 3.2 4.4 5.4
Na 5.0 3.1 5.1 5.1
N 15.4 8.3 14.9 14.5
P 10.7 6.3 10.0 10.5
Cr 6.5 4.0 6.7 6.8

num. sol. of KS equations; in eV (Zunger, 1984)

• Atomic energies: Ground states

HF Xα SVWN BVWN BLYP MP2 QCISD exact
(=LDA) (= GGA) (≈ CCSD)

H 0.4982 0.4540 0.4760 0.5178 0.4954 0.4982 0.4982 0.5000
He 2.8552 2.7146 2.8267 2.9672 2.8978 2.8664 2.8702 2.9037
C 37.6809 37.0950 37.4537 38.0318 37.8320 37.7365 37.7552 37.8450
O 74.7839 73.9544 74.4884 75.3238 75.0470 74.8820 74.8977 75.067
Ne 128.4744 127.3950 128.1419 129.2442 128.8796 128.6262 128.6285 128.939

6-31G∗ basis; in atomic units (1 Hartree=27.21 eV) (Gill, 1993)

PERFORMANCE: ELECTRONIC ENERGIES



➊ LDA (HF) bond lenghts slightly too long (short)

➋ Gradient corrections and post-HF slightly better

• Rules of thumb

• Main group compounds

HF SVWN BVWN BLYP MP2 QCISD Expt.

H2 R0(H-H) 1.379 1.446 1.398 1.414 1.395 1.410 1.401

HF R0(H-F) 1.722 1.776 1.778 1.786 1.782 1.765 1.733

H2O R0(O-H) 1.790 1.844 1.842 1.850 1.829 1.831 1.810

θ0 (H-O-H) 105.5 103.6 102.9 102.7 104.0 104.0 103.9

NH3 R0(N-H) 1.891 1.938 1.937 1.944 1.920 1.925 1.910

θ0 (H-N-H) 107.2 106.0 105.8 104.8 106.4 106.0 106.0

CH4 R0(C-H) 2.046 2.078 2.071 2.076 2.057 2.065 2.092

E R0(44) -0.010 0.014 0.018 0.020 0.010 0.012 –

|E| R0(44) 0.020 0.021 0.018 0.020 0.014 0.013 –

6-31G∗ (Gill, 1993); 32 molecules; in Å and o

PERFORMANCE: MOLECULAR GEOMETRIES



➊ LDA (HF) bond lenghts too short (long)

➋ Gradient corrections and post-HF perform better

➌ Errors generally larger than for main group compounds

➍ Accurate low-spin / high-spin splittings very difficult (role of exact exchange)

• Rules of thumb

• Dissociation energies MH+ → M+H+; excitation energies M→ M∗

SVWN BP86 B3LYP MCPF PCI-80 exp.

MAD diss. en. (kcal/mol) 12 8 4-5 6 2 ±2

MAD exc. en. (eV) 0.75 0.33
M=Sc-Cu; details see Koch / Holthausen, A Chemist’s Guide to DFT (1999)

• Geometries: M(CO)6

method HF MP2/ECP CCSD(T) SVWN BP86 B3LYP exp.

Cr(CO)6 1.970-2.010 1.862 1.939 1.865 1.910 1.921 1.918

Mn(CO)6 – 2.031 – 2.035 2.077 2.068 2.063

W(CO)6 – 2.047 – 2.060 2.116 2.078 2.058
M-C distance (in Å); extended basis sets, most at least of TZ quality; Koch /Holthausen (1999)

PERFORMANCE: TRANSITION METALS



➊ LDA (HF) too large (much too small)

➋ Improvement by gradient corrections or post-HF

• Rules of thumb

• Atomization (dissociation) energies: A-B → A+B

HF SVWN BVWN BLYP MP2 QCISD Expt.

H2 75.9 107.5 110.8 103.2 86.6 91.2 103.3

LiH 30.4 57.5 60.3 54.9 39.8 44.1 56.0

Li2 2.2 22.5 20.5 19.8 14.1 20.9 24.0

F2 -34.3 83.6 47.4 54.4 36.8 27.9 36.9

H2O 131.7 240.8 209.1 207.3 188.8 183.7 219.3

CH4 300.4 436.8 396.0 389.9 354.2 353.9 392.5

E (32) -85.8 35.6 0.1 1.0 -22.4 -28.8 –

|E| (32) 85.9 35.7 4.4 5.6 22.4 28.8 –
32 molecules; 6-31G∗; in kcal/mol (Gill, 1993)

G2 set/6-311+G(3df,2p), MADs: 74.5 (HF); MP2 (7.3); BLYP (5.0); BP86 (10.3)

PERFORMANCE: ATOMIZATION ENERGIES



➊ HF and B3LYP fail,
the former because lack of correlation,
the latter because limr→∞vc(r) wrong

➋ Good basis sets needed

• Van-der-Waals bond

Ar2, 6-311++G(3df,3dp)

• Chemical bond: Summary

R

E

Eb

R0

HF

DFT−LDA

➊ HF too shallow, too steep

➋ LDA too deep, too flat

➌ GGA and post-HF perform better

PERFORMANCE: POTENTIAL CURVES



Non bonding interactions

Types

I Hydrogen-Bonded systems

I Charge-Transfer systems

I Dipole-Interacting systems

I Weak Interactions (VdW, ...)

There are systems where special care is recommended.



Chemical reactions - gas example



Catalytic applications of surface science

• A prerequisite for understanding the function of surfaces is detailed

knowledge of the surface composition and geometry.

• UHV surface science help - sometimes UHV results can be related to

high-pressure applications. Nevertheless, often structures dominating

these application may be impossible to stabilize under UHV conditions.

• The theoretical determination of a (T,p) phase diagram, covering the

surface phases from UHV to realistic conditions, is critical for bridging of

the pressure gap, enabling to investigate real high-pressure problems.

• From the surface phase diagram a coexistence of different surface

phases can be found, leading to an enhanced dynamics and enabling a

reaction mechanism not playing a role otherwise.

The concept of first-principles atomistic thermodynamics e nables us to

calculate such surface phase diagrams.

– p. 2



CO on RuO2

STM: in UHV stable state
There are no vacancies in the Obridge raws.
STM: in an environment containing O2 and CO
– bridge sites are occupied by only ≈ 90% oxygen atoms,
– Rucus sites are occupied by ≈ 70% CO and ≈ 30% O.



CO + O → CO2 on RuO2

Potential energy surface for the reaction COcus + Ocus → CO2 . The actually calculated points are indicated by
white circles. The lateral positions of Ccus and Ocus along the [001] direction have been fixed, fully relaxing all
remining degrees of freedom. The energy zero corresponds to the initial state at (0.00 Å, 3.12 Å). From Reuter and
Scheffler, PRB 2003.



Statistical mechanics of catalysis from first principles
I Analysis of all possibly relevant processes using

density-functional theory

I Calculate the rates of all important processes

Γ(i) = Γ
(i)
0 exp(−∆E (i)/kBT )

I Statistical mechanics approach to describe
– adsorption/desorption of O2 and CO
– diffusion of O and CO
– surface reactions between CObr + Ocus , COcus + Ocus ,
CObr + Obr , COcus + Ocus

Althogether 26 processes! =⇒ Kinetic Monte Carlo

Reuter, Stampfl and Scheffler in Handbook of Materials Modeling, Springer, 2005.



Ab initio surface phase diagram

Combination of thermodynamics and density-functional theory
enables to construct a (T,p) diagram of the stability regions of
different surface phases.

Example: CO oxydation on the RuO2 surface
Surface energy per unit area:

γ(T,{pi}) = G(T,{pi}) -
∑

i Niµi(T , pi )

I The surface free energy depends only on two chemical
potentials (O, CO), the O2 and CO gas phase are independent
reservoirs.

I The vibrational contribution to the Gibbs free energy,
G(T,{pi}), are for RuO2 nearly equal to these of bulk oxide
=⇒ it will be replaced by the corresponding total energies.

I High accuracy calculation of energy differences (± 5 meV).



CO + O on RuO2

Surface free energies, γ(T,{pi}), in the experimentally accessible range of the oxygen chemical potential.

There are used relations µO (T , pO2
) = 1

2
µO2

(T , p0) + 1
2
kBTln(pO2

/p0) and

µCO (T , pCO ) = µCO (T , p0) + kBTln(pCO/p0) to relate the chemical potential to temperature and partial

pressure. The chemical potentials of O2 and CO at p0=1 atm are tabulated.
In the CO/rich limit and if the O chemical potential is below -1.2 eV, CO → C + 1/2 O2 (kink in γ). From Reuter
and Scheffler, PRL 2003.



CO + O on RuO2

Phase diagram of surface structures of RuO2(110) in constrained
equilibrium with gas phase of O2 and CO. Depending on the
temperature and partial pressures of these reactants, several stable
surface phases are found with uncertinity ± 100 K.

Regions of the lowest-energy structures in the (µO , µCO ) space. The additional axes give the corresponding
pressure scales at T=300 and T=600 K. From Reuter and Scheffler, PRL 2003.
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