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How to study microscopic (nanoscopic. . . ) structure

Dimensions of the probe have to be comparable to the dimensions
of the investigated system.

One cannot see inside the material: wave-length of visible light is
by orders of magnitude larger than interatomic distances.

Only indirect methods are available if you want to study interiour
of a material: blackbox techniques.

Blackbox
OutputInput

Diffraction: studying geometric structure (positions of ions)

Spectroscopy: studying electronic structure (energies εnk and
crystal momenta k of electrons)

Modeling and comparing with theory is often indispensable.
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Atomic levels

Atoms:
By measuring the energies at which
the light is emitted or absorbed, a
good picture of the positioning of
the energy levels can be obtained.

E2 − E1 = ~ω
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Density of states

Solids:
Density of states (DOS) describes how many electron states are
there at certain energy ε.

n(ε) =
∑

n

∫

1BZ

dk

4π
δ(ε − εnk) density of states at energy ε

N(E ) =

∫ E

−∞
dε n(ε) number of states up to energy E

Knowing the DOS for a solid is analogous to knowing the energy
levels for an atom.

If we want to know other quantum numbers of stationary states
(e.g., crystal momentum k), we need to study more than just DOS.
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Photoemission as a probe of occupied DOS

E
F

Exciting electrons from the valence
band.

Having more electrons at our
disposal means getting a higher
intensity of the photoemission
spectrum.

Higher DOS for particular energy E

means that more electrons with that
energy are available for being
excited.

Higher DOS ⇒ higher
photoemission intensity.
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Emission and absorption of light quanta

◮ Assume a system is described by an unperturbed
Hamiltonian H0. Consider its two eigenstates |ψi 〉 and |ψf 〉
(i.e., stationary states).

◮ This system is perturbed by Hamiltonian Hint which represents
the interaction between the electrons and the photons,

Hint = −
e

m
A(x) · p .

The vector potential A(x) represents the quantized
electromagnetic field and p is the momentum operator acting
on the electron states.

The above Hamiltonian makes used of the so-called Coulomb

calibration (not important for us). Moreover, it neglects terms

proportional to |A|2, which may be important — we cannot describe

two-photon transitions in this way.
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Fermi’s Golden Rule

Time-dependent first order perturbation theory:

Probability (per unit time) that a perturbation Hint causes a
transition between eigenstates |ψi 〉 and |ψf 〉 of the unperturbed
Hamiltonian is

w =
2π

~
|Mfi |

2 δ(Ef − Ei ± ~ω) .

The δ-function guarantees conservation of energy:
“+” for emission of photons, “-” for absorption of photons.

Transition matrix element Mfi is

Mfi ≈
〈

ψf

∣

∣

∣
e
± i

~
q·x ǫ · p

∣

∣

∣
ψi

〉

,

where q is the photon wave vector (cq = ~ω) and ǫ is the
polarization vector of the radiation.
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How the DOS enters the business

Do not get intimidated by the δ-function!

Probability of a radiative transition:

w =
2π

~
|Mfi |

2 δ(Ef − Ei ± ~ω) .

Recall DOS: n(ε) =
∑

j δ(ε− εj) =
∑

n

∫

(1BZ)
dk
4π δ(ε− εnk).

In photoemission we are interested in the probability that a final
state “f” is created via incoming radiation.
Therefore, we have to integrate over all the initial states “i”.

If the matrix elements do not depend on k,

I (~ω) ≈
2π

~
|Mfi |

2
n(Ef − ~ω) .

The photoemission (and other) spectra thus reflect DOS weighted
by transition matrix elements Mfi .
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PES and DOS examples: when the nature is nice

PES

DOS

εn(k)

Si GaP

PRB 8, 2786 (1973)
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Multicomponent systems: go for the local DOS

If we have a multicomponent system, it is desirable to get
information about the local DOS.

Recall: Local density of states (LDOS) at r is the density of states with

energy ε which results exclusively from electron states at site r.

DOS n(ε) =
∑

n

∫

1BZ
dk
4π δ(ε − εnk)

LDOS n(r, ε) =
∑

n

∫

1BZ
dk
4π |ψn

k(r)|
2 δ(ε − εnk)

Integral of n(r, ε) over the unit cell gives total DOS n(ε).

Integral of n(r, ε) over a sphere drawn around an atom in a solid
gives the density of states associated with that atom.

In this way the spatial inhomogeneity of the electronic structure is
taken into acount.
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Making use of the photoemission matrix elements

Photoemission matrix element Mfi ≈ ǫ · 〈ψf |p|ψi〉 depends on the
difference Ef − Ei , i.e., on the exciting photon energy.

Phys. Scr. T109, 61 (2004)

Hüfner, Photoelectron spec. (1994)

By varying the energy of the incoming radiation ~ω we can put
emphasis on one element or another.
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ARPES — basic principle

Ejected photoelectron with energy
Ekin is detected.

Wave-vector is determined by the
energy Ekin and the direction θ φ.

Wave vector of the photoelectron in
vacuum:

Kout,x =
1

~

√

2mEkin sin θ cosφ

Kout,y =
1

~

√

2mEkin sin θ sinφ

Kout,z =
1

~

√

2mEkin cos θ
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Three steps model of photoemission

Not very accurate but transparent and intuitive.

Hüfner, Photoelectron spectroscopy (1994)

The following processes are
treated separately:

1. Photoexcitation of an
electron in the bulk.

2. Propagation of the excited
electron to the surface.

3. Escape of the electron from
the bulk into the vacuum.
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Recovering ε
n
k and k (1)

Conservation of energy: Ekin = ~ω − Φ− (EF − Ei )

Energy bands plotted in the extended zone scheme for convenience (the

range of k is not restricted to 1BZ).
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Recovering ε
n
k and k (2)

Momentum:

Parallel component k‖ is conserved up to a reciprocal lattice vector:

k‖ = Kout,‖ − G‖ .

18/55



Recovering ε
n
k and k (3)

Perpendicular component can be recovered if assumptions about
the bulk final state (in the solid) are made.

Assuming the free-electron-like character of the final state inside
the crystal one gets

Ef − E0 =
~
2k2

2m
=

~
2

2m

[

(k⊥ + G⊥)
2 + (k‖ +G‖)

2
]

.
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Recovering ε
n
k and k (4)

Energy balance: Ef − E0 = Ekin + (EV − E0)

Free-electron approx.: Ef − E0 = ~2

2m

[

(k⊥ + G⊥)
2 + (k‖ + G‖)

2
]

.
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Recovering ε
n
k and k (5)

~
2

2m

[

(k⊥ + G⊥)
2 + (k‖ + G‖)

2
]

= Ekin + (EV − E0)

k‖ = Kout,‖ − G‖

k⊥ + G⊥ =

√

2m

~2
[Ekin + (EV − E0)] − K 2

out,‖

=

√

2m

~2

[

Ekin + (EV − E0) − Ekin sin2 θ
]

=

√

2m

~2
[Ekin cos2 θ + (EV − E0)]

=

√

2m

~2
[Ekin cos2 θ + V0]

V0 is the difference between the zero vacuum energy and bottom of the

band in a crystal.
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Few more notes

k⊥ + G⊥ =

√

2m

~2
[Ekin cos2 θ + V0]

The inner potential V0 has to be determined by an educated quess
(by fitting it so that experiment matches the theory or by imposing
symmetry requirements — to make the bands have the symmetry
of the solid).

Weak point:
Nearly-free electron approximation for the final states in the bulk
will work well only for “nice” materials (such as alkali or simple
metals) and/or for high energies.
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Surface sensitivity of PES

The depth from which the photoelectrons can be detected is
restricted by the mean free path of electrons in a solid.

To probe bulk, either very low ~ω (threshold PES) or very high ~ω
(HAXPES) is needed.
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Depth-dependence of spectra: Where the bulk begins?

Cu(100) surface.

Layer-resolved
spectral functions
corresponding to
photoemission at
angle 38◦ for the
surface layer and
the first nine
subsurface layers.

Lüdders et al. JPCM 13, 8587

(2001)

Beyond the order of five layers one basically recovers bulk
behaviour.
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Probing the surface, probing the bulk

By varying the energy, different depths are probed.

~ω=1000 eV
Fe(001)

8 ML MgO/Fe(001)

~ω=6000 eV
Fe(001)

8 ML MgO/Fe(001)

Minár et al. JESRP (2011)

Fe-related features recovered for high photon energies ⇒ access to
burried interfaces.
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Surface states vers. bulk states

How to distinguish one from the other in the photoemission
spectra?

◮ Surface states have no dispertion along k⊥.

◮ Energies and momenta of surface and bulk states cannot
overlap (otherwise, it would be a bulk state. . . )

◮ Surface state have sharper linewidths (DOS in surface layers is
more atomic-like).
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Example of εnk reconstruction: HgSe(110)

Model of nearly-free electron final states:

k⊥ =
√

2m
~2 (Ekin + V0)− G⊥

Normal ARPES (θ=0◦).
Orlowski et al. 2001

Surface states: no dispersion

(marked by solid vertical lines)
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Example of εnk reconstruction: HgTe(110)

Model of nearly-free electron final states:

k⊥ =
√

2m
~2 (Ekin + V0)− G⊥

Normal ARPES (θ=0◦).
Orlowski et al. 2001

Surface states: no dispersion

(marked by solid vertical lines)
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One step model of photoemission: Less is more

Not so intuitive but more
accurate.

No hand-waving arguments, one
has to calculate it.

Why:
A lot of spectra, a lot of details,
a lot of opportunities to find a
disagreement (a scientific
prediction should be falsifiable).
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One step model: Formal description

Probability of a radiative transition:

I (~ω) ≈
∣

∣

〈

εf , k‖ |Hint|ψi

〉
∣

∣

2
δ(εf − εi ± ~ω) .

The proper final state is an “inverse LEED state” |εf , k‖〉:

◮ at infinity, it approaches a free-electron with parallel
momentum k‖ and kinetic energy εf ,

◮ in the solid, it attenuates when going deep beneath the surface
to account for the finite mean-free path of the photoelectron.

The |εf , k‖〉 state should be computed accounting for the surface
barrier. This can be conveniently achieved via multiple-scattering
(a.k.a. KKR) or Green function formalism.

The attenuation of the final state is achieved through an imaginary
component of the effective one-electron potential.
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One step model: spectrum of Cu(111)

Hüfner, Photoelectron spectroscopy (1994)

Spectra change if

the energy of the

exciting photon

changes.

Good agreement between LDA calculation and theory (in this
case. . . ).
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ARPES — necessity of “non-conservation of momentum”

(Conservation) laws must be obeyed: E
(system)
f − E

(system)
i = ~ω

k
(system)
f − k

(system)
i = kγ

The problem: change of electron momentum cannot be catched up
by change of incoming photon momentum (|k|γ = 2π

λ
).

Typical (crystal) momentum of electrons: 2π/a ≈ 2Å
−1

Typical momenta of photons in incoming UV light:

~ω = 100 eV ⇒ |k|γ = 0.05 Å
−1

~ω = 21.2 eV ⇒ |k|γ = 0.008 Å
−1

Photon provides the electron with the energy, crystal potential
provides the momentum needed for reaching the excited state.

For individual electron the crystal momentum is conserved, i.e.,
momentum k is conserved up to a reciproval lattice vector G.
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Photon momentum effect

For (hard) x-rays, photon momentum |k|γ = 2π
λ

cannot be
neglected any more.

PRB 77, 045126 (2008)
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Matrix elements: dipole approximation

Transition matrix element: Mfi ≈
〈

ψf

∣

∣

∣
e
± i

~
q·x ǫ · p

∣

∣

∣
ψi

〉

.

Taylor expansion: e±
i

~
q·x = 1 ± i

~
q · x + 1

2(
i
~
q · x)2 + . . .

If the quantum system is localised within a characteristic length a

(the processes occur at this length scale),

1

~
aq ≪ 1 ⇔ a ≪

~

q
=

~

~ω
c

=
c

ω
=

λ

2π
,

then the term i
~
q · x and its powers can be neglected.

We thus have just Mfi ≈ 〈ψf |1 · ǫ · p|ψi〉 = ǫ · 〈ψf |p|ψi〉 .

This is called the dipole approximation.

It can be used if the emission/absorption process happens at
lengths much smaller than the wavelength of the radiation.

Usually it is the case.
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Other forms of matrix elements

“Primordial” dipole matrix element:

Mfi ≈ ǫ · 〈ψf |p|ψi〉 .

Using the coordinate-momentum commutation relations
[ri ,pj ] = i~δij (and few other tricks), the matrix element in dipole
approximation can be written as

Mfi ≈ ǫ · 〈ψf |p|ψi〉 = imωǫ · 〈ψf |r|ψi 〉 =
i

ω
ǫ · 〈ψf |∇V |ψi 〉

In most situations, all these forms are equivalent.

For practical reasons, the 〈ψf |∇V |ψi 〉 form mostly used in PES.
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(Dipole) selection rules: where do they come from?

Dipole transition matrix element: ǫ · 〈ψf |r|ψi 〉

Analogy:
Integral of a product of an even and an odd functions will be
identically zero.

Likewise:
If wave functions |ψi 〉 and |ψf 〉 have certain symmetries, the
(dipole) matrix element will be identically zero.

Such transitions are called forbidden transitions.

Transitions forbidden by the dipole selection rule are accessible via

higher-order terms in the exp(± i

~
q · x) expansion, their intensity is

usually much less than intensity of the dipole-allowed transitions.
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Selection rules in PES: what do they do?

Assuming a sample with a mirror plane,
photoemission from a d orbital.

To have non-vanishing intensity, the
whole integrand must be even w.r.t. the
mirror plane (like integrating from −∞
to ∞).

◮ Plane wave ψf 〉 is always even
w.r.t. sample mirror plane.

◮ ǫ · r is even if ǫ is in-plane and odd
if ǫ is perpendicular to the plane

◮ |ψi 〉 may be even or odd (here it is
dx2−y2 , i.e., even).

Different polarizations probe different
states: ǫp probes dx2−y2 , ǫs probes dxy .

ǫ · 〈ψf |r|ψi 〉
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Example: polarization-dependence of PES of Cu(111)

Lüdders et al. JPCM 13, 8587

(2001)

Calculated total photocurrent for normal emission at 21.2 eV
photon energy.
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One step model: spectrum of Ni

Calculation done using the local density approximation (LDA) to
the DFT yields a very poor agreement with experiment !
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Beyond (effective) one-electron description (1)

One electron formalism:

I (~ω) ≈
∣

∣

〈

Ef , k‖ |Hint|ψi

〉
∣

∣

2
δ(Ef − Ei − ~ω) .

Assuming N interacting electrons:

I (~ω) ≈
∣

∣

∣

〈

Ψ
(N)
f |Hint|Ψ

(N)
i

〉∣

∣

∣

2
δ(E

(N)
f − E

(N)
i − ~ω) .

|Ψ
(N)
i 〉 = |Ψ

(N)
0 〉 many-body ground state

Sudden approximation: Interaction of the excited outgoing
photoelectron with the rest system is neglected.

a
†
f ,k‖

|Ψ
(N−1)
S 〉 a

†
f ,k‖

creates |εf , k‖〉
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Beyond (effective) one-electron description (2)

Factorization into single particle and many-body terms using a
representation by single-particle states φm:

I (~ω) ≈
∑

mm
′

∑

S

〈

φf ,k‖ |Hint|φm

〉〈

Ψ
(N)
0 |a†m|Ψ

(N−1)
S

〉

×δ(εf − ~ω + E
(N−1)
S − E

(N)
0 )

×
〈

Ψ
(N−1)
S |am′ |Ψ

(N)
0

〉〈

φm′ |H†
int|φf ,k‖

〉

I (~ω) ≈
∑

mm
′

〈

φf ,k‖ |Hint|φm

〉

Amm
′ (εf − ~ω)

〈

φm′ |H†
int|φf ,k‖

〉

Amm
′ (ε) :=

∑

S

〈

Ψ
(N)
0

∣

∣

∣
a†m

∣

∣

∣
Ψ

(N−1)
S

〉

δ(ǫ+ E
(N−1)
S − E

(N)
0 )

×
〈

Ψ
(N−1)
S

∣

∣am′

∣

∣Ψ
(N)
0

〉

After Braun JPCM 16, S2539 (2004)
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Spectral function A(ε)

Photoemission-specific part:
〈

φf ,k‖ |Hint|φm

〉

Many-body ground-state-specific part:

Amm
′ (ε) :=

∑

S

〈

Ψ
(N)
0

∣

∣

∣
a†m

∣

∣

∣
Ψ

(N−1)
S

〉

δ(ǫ+ E
(N−1)
S − E

(N)
0 )

×
〈

Ψ
(N−1)
S

∣

∣am′

∣

∣Ψ
(N)
0

〉

m stands for any representation (quantum number). Typically, it
denotes a Bloch state.

Spectral function A(ε) is a generalization of DOS.
For non-interacting electrons:

Amm(ε) = δ(ε − εm)

Recall the definition of DOS: n(ε) =
∑

m δ(ε − εm)
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Crash course on Green’s functions in quantum theory

To get wave function of a quantum system, we may either solve
the Schrödinger equation

i~
∂

∂t
Ψ = HΨ ,

or “take” the Green’s function (operator) and apply it on the wave
function at t0,

|Ψ(t)〉 = G (+)(t, t0) |Ψ(t0)〉 .

For time-independent solutions, we can either solve

E |ψ〉 = (H0 + V )|ψ〉 ,

or use a solution of a simpler problem

E |ψ0〉 = H0|ψ0〉 ,

and apply the Green’s function:

|ψ〉 = (1 + G (+)V )|ψ0〉 .
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Why Green’s functions?

Working with Green’s functions does not bring anything really new.

Nominally, it is just another formal complication to please the
mathematical gods.

However, working with Green’s functions is (often) practical in
many-body physics: various approximations can be more easily
introduced and step-by-step improved in the Green’s functions
formalism.

Spectral function A(ε), important in describing PES, is part of the
Green’s functions world.

Spectral function A(ε) is related to retarded Green function:

Amm
′ (ε) := −

1

π
ImG

(+)

mm
′ (ε)
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Dyson equation

Single-particle situation:

Hamiltonian H0 has got a corresponding Green’s function G0,
Hamiltonian H0 + V has got Green’s function G :

G (E ) = G0(E ) + G0(E )V G (E ) .

The perturbing potential V does not depend on energy.

Many-body situation:

One-particle Green’s function of an interacting many-body system
G (E ) is related to Green’s function of a non-interacting system
G0(E ) via

G (E ) = G0(E ) + G0(E )Σ(E )G (E ) .

Self-energy Σ(E ) depends on energy, it incorporates all the
many-body physics.
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Self-energy: quick and dirty view

Green’s function of interacting system G (E ), Green’s functin of
non-interacting system G0(E ), self-energy Σ(E ):

G (E ) = G0(E ) + G0(E )Σ(E )G (E ) .

In representation of single-particle Bloch waves:

G (k, ε) =
1

ǫ− εk +Σ(k, ε)

Self-energy Σ(k, ε) describes how binding energies are modified by
the many-body effects.
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Spectral function and spectral lines

Many-body effects change a sharp energy level into a broader peak plus a

satelite.

I (~ω) ≈
∑

mm
′

〈

φf ,k‖ |Hint|φm

〉

Amm
′ (εf − ~ω)

〈

φm′ |H†
int|φf ,k‖

〉

A(k, ε) =
1

π

Σ(k, ε)

[ǫ− εk + ReΣ(k, ε)]2 + [ImΣ(k, ε)]2

ReΣ(k, ε) describes energy shift of
the spectral peak.

ImΣ(k, ε) describes the change of
the width of the spectral peak.
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Generalizing the εn(k) picture

States are represented not by single peaks in the spectral function
Ak(ε) but by broadened elastic resonances followed by satelite
structures.
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Adding correlations explicitly

Ĥ =
∑

k ℓm ℓ
′
m

′
σ

εℓmℓ
′
m

′
σ(k) ĉ

†
kℓmσ ĉkℓ′m′

σ

LDA
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Adding correlations explicitly

For correlated bands, add Coulomb interaction between electrons
at the same sites

Ĥ =
∑

k ℓm ℓ
′
m

′
σ

εℓmℓ
′
m

′
σ(k) ĉ

†
kℓmσ ĉkℓ′m′

σ

+
∑

id ,ℓd

∑

mσ,m
′
σ
′

′
Uσσ

′

mm
′

2
n̂kid ℓdmσ n̂kid ℓdm

′
σ
′

−
∑

id ,ℓd

∑

mσ,m
′
σ
′

′ Jmm
′ ĉ

†
kid ℓdmσ ĉ

†

kid ℓdm
′
σ
′ ĉkid ℓdm

′
σ ĉkid ℓdmσ

′

LDA local Coulomb Hund’s rule
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Adding correlations explicitly

For correlated bands, add Coulomb interaction between electrons
at the same sites

Ĥ =
∑

k ℓm ℓ
′
m

′
σ

εℓmℓ
′
m

′
σ(k) ĉ

†
kℓmσ ĉkℓ′m′

σ

+
∑

id ,ℓd

∑

mσ,m
′
σ
′

′
Uσσ

′

mm
′

2
n̂kid ℓdmσ n̂kid ℓdm

′
σ
′

−
∑

id ,ℓd

∑

mσ,m
′
σ
′

′ Jmm
′ ĉ

†
kid ℓdmσ ĉ

†

kid ℓdm
′
σ
′ ĉkid ℓdm

′
σ ĉkid ℓdmσ

′

−
∑

id ,ℓd

∑

mσ

′ ∆ǫd n̂kid ℓdmσ

LDA local Coulomb Hund’s rule double counting
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Going beyond the LDA

The LDA is a goose that lays golden eggs.

Direct approaches to many-body physics are not even close to being

materially-specific (save few “singular cases”).

You want to leave as much of LDA it as possible.

LDA+something methods: electron-electron interaction is added
explicitly on top of the LDA Hamiltonian.

You describe localized electrons in a suitable LDA-generated basis
and add Hubbard U and J to describe on-site interaction between
electrons.

Caveat: The U and J values are basis-dependent, therefore not
blindly transferrable from one calculations to the another.

Double counting problem: Some electron-electron interaction has been

included in the LDA already so care has to be taken not to count it

twice. An educated guess it needed.
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Describing many electron effects: LDA+DMFT

DMFT = Dynamical Mean Field Theory

Formalism to transform many-body

interactions among electrons in a solid into

interaction of a single impurity with a

suitable constructed environment (bath).

Bulk Ni: the DOS

ReΣ(ε)

ImΣ(ε)
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LDA and LDA+DMFT: angle-integrated spectrum of Ni

Minar et al. PRL 95, 166401 (2005)

Main effects of LDA+DMFT:

1. Narrowing of the main peak.

2. Appearence of satellite peak
(“lower Hubbard band”).

Fano effect:
If the incoming x-rays are circularly
polarized, there is a spin-imbalance
in the ejected photoelectrons.
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LDA and LDA+DMFT: ARPES of Ni

Braun et al. PRL 97, 227601 (2008)

LDA+DMFT results are not perfect but present a significant
improvement over plain LDA.
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