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Translation periodicity

Primitive translation vectors a1, a2, a3:
Any translation can be written as

T(n1, n2, n3) = n1a1 + n2a2 + n3a3 .

A set of all translations forms a lattice:

Ri =
∑

i

[

n
(i)
1 a1 + n

(i)
2 a2 + n

(i)
3 a3

]

.

a
1

a
2
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Primitive cell

Primitive cell: Tiny box chosen so that when stacked one next to
another, the space is filled.

The primitive cell is not uniquely defined:

In praxis, we rely on conventions.
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Wigner-Seitz cell

Wigner-Seitz cell: Region in space that is closer to a fixed lattice
point than to any of the other lattice points.

Wigner-Seitz cell is a primitive cell. It is defined uniquely.
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Lattice vectors, basis

◮ Crystal structure =
(Bravais) lattice + basis

◮ Symmetry of a crystal:

◮ Translation symmetry

◮ Point symmetry
(rotations, reflections,
inversions)

When dealing with formal matters in this talk, we will focus on
translation symmetry only.
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Bravais lattices, space groups

14 Bravais lattices:

Translations & operations that leave
a particular point of the lattice fixed,
assuming a spherically symmetric

basis.

230 space groups:

Translations & operations that leave
a particular point of the lattice fixed,
assuming a basis of arbitrary

symmetry.
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Bravais lattices, space groups

14 Bravais lattices:

Translations & operations that leave
a particular point of the lattice fixed,
assuming a spherically symmetric

basis.

230 space groups:

Translations & operations that leave
a particular point of the lattice fixed,
assuming a basis of arbitrary

symmetry.

Some of the conventional unit cells
are not primitive cells (e.g. fcc, bcc).
Different conventions, confusion is
possible (probable).
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Representation of functions: the basis

Quantum states are represented by integrable (“normalizable”)
functions. Integrable functions form a vector space.

Any vector can be expressed as a linear combination of a basis
vectors.
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Representation of functions: the basis

Quantum states are represented by integrable (“normalizable”)
functions. Integrable functions form a vector space.

Any vector can be expressed as a linear combination of a basis
vectors.

Fourier transformation: Plane waves eik·r form a basis set in
a space of functions integrable in a volume V :

f (r) =

∫

V

dk f (k) eik·r ,

expansion coefficients are the Fourier components

f (k) =
1

V

∫

V

dr f (r) e−ik·r .

If no other requirements are laid on f (r), this basis is continuous
(integral instead of sum).
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Reciprocal lattice

For a given Bravais lattice {Ri}, some plane waves eik·r will have
the same periodicity as this lattice, i.e., their wave vector k is such
that

e
ik·(r+R) = e

ik·r ⇔ e
ik·R = 1 .

Set of all such wave vectors {Ki} forms a lattice in the k-space.
This lattice is called reciprocal lattice.
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Reciprocal lattice

For a given Bravais lattice {Ri}, some plane waves eik·r will have
the same periodicity as this lattice, i.e., their wave vector k is such
that

e
ik·(r+R) = e

ik·r ⇔ e
ik·R = 1 .

Set of all such wave vectors {Ki} forms a lattice in the k-space.
This lattice is called reciprocal lattice.

Any vector K of the reciprocal lattice can be written as

K = n1b1 + n2b2 + n3b3 ,

where the basis vectors of the reciprocal lattice bi are related to
the basis vectors of the Bravais lattice ai via

bi · aj = 2πδij .
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Functions with the periodicity of the lattice

If a function f (r) has the same periodicity as the lattice {Ri}, only
those components f (k) of its Fourier expansion are non-zero which
correspond to reciprocal lattice vectors, k ∈ {Ki},

f (r) =

∫

V

dk f (k) eik·r −→ f (r) =
∑

K

f (K) eiK·r .

To represent a function with the periodicity of the lattice, it is sufficient
to take a discrete sum, with one term per each reciprocal lattice vector.

(Otherwise, we would have a continuous subscript k.)

Reciprocal lattice can be viewed as image of the Bravais lattice in
the momentum space.
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Quantum states for a periodic potential

The potential V (r) has the periodicity of the crystal:

V (r+ R) = V (r) .

Looking for a solution of a Schrödinger equation for an electron in
a periodic potential:

Ĥ ψi(r) =

[

~
2

2m
∇2 + V (r)

]

ψi (r) = εi ψi(r) .

Solutions ψi (r) need not have translational periodicity !

Recall: Solutions of Schrödinger equation in a spherically symmetric
potential ψi(r) = RnℓYℓm(̂r) are not spherically symmetric either.
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Finding the right quantum numbers

◮ How to find a complete set of solutions ψi (r) ?

|ψ〉 =
∑

i

|ψi 〉

〈r|ψ〉 =
∑

i

〈r|ψi 〉

ψ(r) =
∑

i

ψi (r)

◮ Good quantum numbers are eigenvalues of operators which
commute with the Hamiltonian; then we can have wave
functions which are simultaneously eigenvectors of the
Hamiltonian and of those additional operators.

◮ Recall: In case of spherical symmetric potential, Ĥ commutes
with L̂2 and with L̂z , therefore we have quantum numbers ℓ
and m.
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The right symmetry operator for a crystal

◮ For a crystal, hamiltonian commutes with the translation
operator TR, which is defined as

T̂R ψ(r) := ψ (r+ R) = ψ (r + n1a1 + n2a2 + n3a3) .

Translation TR leaves the Hamiltonian Ĥ unchanged.

Suitable set of complete state vectors:
set of vectors which are simultaneously eigenvectors of the
Hamiltonian operator H and of the transitions operator TR.
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Bloch theorem (1)

Eigenstates of Hamiltonian can be chosen with a definite value of
the translation operator TR, which can then be used to identify
them.

Eigenvalues tR of the T̂R operator:

T̂R ψ(r) = tR ψ(r) .

By using group properties of translations and requiring that the
wave function does not diverge, one gets

tR = e
ik·R .

Bloch theorem:
ψ (r + R) = e

ik·R ψ(r) .
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Bloch theorem (2)

Equivalent formulation: for a periodic potential, wave functions can
be written as

ψn
k(r) = e

ik·r unk(r) ,

where unk (r) has the periodicity of the crystal:

unk (r+ R) = unk (r) .

Eigenstates with same eigenvalues of the translation operator T̂R

but different energies are distinguished by an additional index n.

Analogy:

For an electron in a spherically symmetric potential, there is also

a “principal quantum number” n apart from the ℓ and m values (we have

got 2p states, 3p states, 4p states, . . . ).
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Band structure: Bands of eigenvalues εnk
Wave function ψn

k(r) corresponds to energy εnk, i.e.,

Ĥ ψn
k(r) = εnk ψ

n
k(r) .

Reminder: k is linked to eigenvalues of translation operators T̂R.

For macroscopic (“infinitely large”) crystal, the wave vector k is
a continuous variable.

For each k there is a discrete set of eigenstates labeled by the
index n.

We have thus bands of energy eigenvalues εnk, for each n there is
one band.
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Bands of eigenvalues εnk: Example

For each k there is a discrete set of eigenstates labeled by the
index n.

http://en.wikipedia.org/wiki/File:Bulkbandstructure.gif
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Range of values of the quantum number k

The quantum number k is not uniquely defined.

Recall: if R is a lattice vector and K is a reciprocal lattice vector,
then e

iK·R = 1.

ψ (r+ R) = e
ik·R ψ(r) = e

ik·R
e
iK·R ψ(r) = e

i(k+K)·R ψ(r)

⇒ k can be substituted by k
′

=k+K, where K is a reciprocal
lattice vector.

In this way, the wave vector k can be confined to a single primitive
cell in the reciprocal space.

Conveniently (and conventionally), we use the Wigner-Seitz cell for this

primitive cell in the reciprocal space. This cell is called the first Brillouin

zone.
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More on Brillouin zones

Analogously to the first
Brillouin zone (BZ), one
can define second, third,
forth, . . . Brillouin zones.

Ashcroft, Mermin: Solid State Physics
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Reduced, extended, repeated zone scheme
k is not unique ⇒ more equivalent ways to describe

the band structure

repeated

zone scheme

repeated

zone scheme

reduced

zone

scheme
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Naming conventions

Some points in the Brillouin zone are given special “names”.
Band-structure is usually shown along lines connecting these
points.

No science or mystique, just naming convention. . .
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BZ boundary is the space to watch. . .

Plane waves with wave vector k at BZ boundary satisfy the Bragg
condition, so they will undergo subsequent reflections.

Kittel: Introduction to Solid State Physics

Bragg reflections at BZ boundary

will make standing waves.

Waves ψ(+) and ψ(−) generate

different charge distributions, these

will lead to two different potential

energies due to different repulsion

from the ions.

The energy difference between the

standing waves ψ(+) and ψ(−) is

the origin to the energy gap Eg .
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Band structure of nearly free electrons

Energy of free electrons:

εnk =
~
2

2m
k2 .

If the crystal potential is weak, εnk differs
only slightly from the free electron case.

Main effects of the crystal potential:

1. The band structure can be folded
into the first BZ.

2. At BZ boundaries, minigaps in the
energy will appear.

26



Real life example: aluminium

Band structure of aluminium is very close to free electron case.

Full lines represent energy band of aluminium, dashed lines represent

energy bands of a free electron.
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Density of states (1)

How to sum over all electron states?

For systems with discreet energy levels:

Total energy ETOT is obtained by a sum of energies εi over all the
occupied states,

ETOT =
∑

i

2 εi

(the factor 2 accounts for spin degeneracy).
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Density of states (2)

For system with continuous energy levels:

Total energy ETOT is obtained as an integral, weighting the
energy ε by the density of states n(ε)

ETOT =

∫

dε ε n(ε) .

Intuitively:
Density of state (DOS) describes how many electron states are
there at certain energy ε.

Formally:

n(ε) =
∑

n

∫

1BZ

dk

4π
δ(ε − εnk) .
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Aluminium again

E = p /2m2

DOS ∝ √E

Free electrons: Density of states
is proportional to

√
ε.
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Aluminium again

E = p /2m2

DOS ∝ √E

Free electrons: Density of states
is proportional to

√
ε.

Aluminium: its nearly free
electron character gets revealed
also in the DOS.
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Band structure and DOS

n(ε) =
∑

n

∫

1BZ

dk

4π
δ(ε− εnk)

=
∑

n

∫

Sn(ε)

dS

4π3

1

∇εnk

States with small ∇εnk
correspond to high DOS.

Peaks in DOS can be traced to local extrema of the band
structure εnk.
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Local density of states

Intuitively: Local density of states (LDOS) at r is

◮ the density of states with energy ε which results exclusively
from electron states at site r,

◮ the electron density at site r which results exclusively from
states with energy ε.

DOS n(ε) =
∑

n

∫

1BZ

dk
4π δ(ε − εnk)

LDOS n(r, ε) =
∑

n

∫

1BZ

dk
4π |ψn

k(r)|
2
δ(ε − εnk)

Integral of n(r, ε) over the unit cell gives total DOS n(ε).

LDOS reflects the spatial inhomogeneity of electronic structure in
a solid.
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Bloch spectral function A(k, ε)

On a half-way between band structure εnk and and the density
of states n(ε).

n(ε) =
∑

n

∫

1BZ

dk

4π
δ(ε − εnk)

n(ε) =

∫

1BZ

dk

4π

∑

n

δ(ε − εnk)

n(ε) =

∫

1BZ

dk

4π
A(k, ε)

Bloch spectral function A(k, ε) can be interpreted
as a k-resolved DOS.

A(k, ε) =
∑

n

δ(ε − εnk)

A(k, ε, r) =
∑

n

|ψn
k (r)|2 δ(ε− εnk)
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Crystal momentum k

Bloch wave functions ψn
k(r) are not eigenvectors of the momentum

operator: Momentum is conserved only if there is a full translation

invariance, here we have only invariance w.r.t. lattice translations {Ri}.
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Crystal momentum k

Bloch wave functions ψn
k(r) are not eigenvectors of the momentum

operator: Momentum is conserved only if there is a full translation

invariance, here we have only invariance w.r.t. lattice translations {Ri}.

However, ψn
k (r) are eigenvectors of the translation operator T̂R:

T̂Rψ
n
k(r) ≡ ψn

k(r + R) = e
ik·Rψn

k(r) .

Corresponding conserved quantity is the crystal momentum ~k.

Recall: States described by k can be describe also by k+K, so k

can be always restricted to the first BZ.

k is conserved up to a reciprocal lattice vector.

Crystal momentum ~k is an analogy to the momentum p but it is

not the same.
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Occupied and unoccupied states

Pauli exclusion principle: Electrons are fermions, so there can be
only one electron per state.

Spin degeneracy means that a state represented by particular n and
k can be occupied by two electrons at most.

In the ground state, electron states are being populated from
bottom up. Energy levels εnk will be occupied below a certain
energy and unoccupied above it.

In metals, this energy is called Fermi energy.

In molecules, it is called HOMO (highest occupied molecular
orbital).
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Band gap (1)

Band structure of silicon:
for some energies, there
are no corresponding
states ⇒ energy gap.

Band structure of aluminium: for each
energy there is a state ⇒ no band gap.
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Band gap (2)

Density of states:

Si
gap is present

Al
no gap
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Metals and insulators

metal semiconductor insulator

Valence

band

Conduction

band

E
le

c
tr

o
n
 e

n
e
rg

y

overlap

Bandgap
Fermi level

Metals: The border between occupied and unoccupied states
goes through a band ⇒ infinitesimal energy is
enough to excite the system.

Insulators: There is a completely filled band, then is an energy
gap, then come empty bands ⇒ the energy gap has
to be overcome to excite the system.

Semiconductors: the gap is small (∼1 eV) and impurities “contaminate”

it with additional energy levels.
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What is knowing the band structure good for?

Solid material is a mixture of ions and electrons.

Electrons act as glue that keeps the material together.

Properties of the electron glue determine to large extent the
properties of solids.

Ab-initio calculations of total energies: given just atomic numbers
of constituting atoms, structure and properties of solids can be
predicted.
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Model Hamiltonian or ab-initio ?

It depends. . .

Model Hamiltonian: All many body physics is in it. However, it has
to be simplified so that it can be solved and the
parameters have to be obtained by fits — it is not
materially-specific. It can help us, though, to
understand the principles.

Ab-initio calculations: Many-body physics has to be included in
a simplified (mean-field) way. However, it is
materially specific — it can be predictive !
(Recall this during the talk on DFT on 4th November.)
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Finding ψn
k(r), ε

n
k, and V (r)

We need to solve the Schrödinger equation for an electron in a
given potential V (r).

Wave functions ψn
k(r) determine the electron density n(r), electron

density determines the potential V (r) potential V (r).

The potential V (r) determines the wave functions ψn
k (r).

−→ Need for self-consistency between V (r) and ψn
k(r).

Compare with the lecture on DFT and LDA on 4th November.

42



Self-consistent scheme: ψn
k(r) ⇔ V (r)
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How to solve Schrödinger equation (1)

Solving Schrödinger equation numerically in 3D is a killer.

The way to proceed: Transform it into a matrix equation, using a
suitable basis.

(Okay, there are other ways as well, e.g., the KKR and/or Green’s
function method.)
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How to solve Schrödinger equation (2)

Having a complete set of orthogonal functions {φi (r)},
any function ψ(r) can be written as ψ(r) =

∑

i ci φi(r).

Then, instead of
Ĥ ψ(r) = εψ(r)

we can solve
∑

j

Hij aj = ε ai

with matrix elements Hij

Hij :=
〈

φi |Ĥ |φj
〉

=

∫

drφ∗i (r)H(r)φj (r) .

Matrix diagonalization is a computer-friendly task.

Caveat: The sum
∑

j is infinite (may even be continuous. . . ).
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How to solve Schrödinger equation (3)

Using a basis set {φi (r)}, we have to find eigenvectors and
eigenvalues of an infinite matrix,

∑

j

Hij aj = ε ai .

The trick:
Choose the basis functions {φi (r)} conveniently, so that only
a finite (and small) number of them describes the problem with
sufficient accuracy.

The choice of {φi (r)} thus depends on what kind of system and
what kind of property we are interested in.
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Which band structure method ?

We need to tailor our method to the problem.

There are no “universal” methods except for very simple problems
(that need not be solved).

Criteria governing which method to choose:

◮ Metal or insulator? Covalent or ionic?

◮ Electron states localized or extended?

◮ High-symmetry or low-symmetry system? Layered?

◮ Ordered or disordered?

◮ Interested in ground-state or in excited state (spectroscopy)?

◮ . . .
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Dealing with surfaces: Supercell calculations

Create a surface “artificially”, by forcing a periodicity to the
system.

Advantage: Using all the polished tools of bulk calculations.

http://www.tcm.phy.cam.ac.uk/castep

simulating adsorbate simulating substitutional impurity

48
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Zoology of band structure methods (and codes)

◮ All-electron methods
Core and valence electrons are dealt with on the same footing.

◮ Augmented functions
◮ FLAPW (Fleur, Wien2k, Elk)
◮ KKR-GF (groups in Jülich, Osaka, Ames, feff)
◮ LMTO (Stuttgart, Turek and Kudrnovský in Prague)

◮ Localized orbitals
◮ LCAO (Crystal)

◮ Pseudopotential methods
Core electrons are (semi-)ignored — they are effectively merged
with the nucleus.

◮ Plane waves (Abinit, Quantum Espresso, Vasp,
Castep)

◮ LCAO (Siesta)

“Method” and “code” are (unfortunately) often used interchangeably.
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FLAPW method

Full potential Linearized Augmented Plane Waves method.
Considered (by some) to be the most accurate method.

Basis is made of augmented plane waves
muffin-tin spheres: φ(r) ∼ ∑

ℓm aℓm Rℓ(r)Yℓm(r)
interstitial region: φ(r) ∼ e

ikr

◮ Linearized method, same basis for each energy, Taylor
expansion around the middle of the valence band

◮ Accurate

◮ Computer demanding, relatively slow
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KKR-Green’s function method

Korringa-Kohn-Rostoker a.k.a. multiple-scattering method.

c

Reformulated version as a KKR-Green’s
function method.
It it not a variational method.

It is not a linearized method:

◮ It is exact (specifically also concerning charge densities).
However, for energies and consequently also atomic geometries

accuracy of linearized methods is sufficient.

◮ It is relatively slow and somewhat cumbersome.

◮ Green’s function → naturally suited for spectroscopy.

◮ Green’s function → naturally suited for many-body physics.

◮ Efficient when treating surfaces, adsorbates, disorder.
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Surfaces via Green’s function methods

Proper semi-infinite systems, no supercell.
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Phys. Rev. B 82, 174414 (2010)

Bloch spectral function: generalization of

the band-structure for non-periodic systems

Surface of a 14-layers slab.

Surface of a 38-layers slab.

Surface of a semi-infinite layer.
Only true surface states and resonances
remain, no spurious bands.
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Adsorbates and impurities

Pt

Co

Green’s function formalism:
Embedded cluster in an
infinite host.

For small impurities such as adatoms, supercells can be used
without creating any “issues”.

To deal with clusters of hundreds of atoms, Green’s function
formalism is more suitable.
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Dealing with disorder

Disordered systems can be dealts with by averaging over many
large supercells, spanning many different local environments.
−→ Accurate and slow.

Mean-field approach: define a suitable effective medium.

=

Coherent Potential Approximation (CPA) within the Green’s
function method.

x
A + xB =

Rep. Prog. Phys. 74 096501 (2011)

54



LMTO method

Linear combination of Muffin-Tin Orbitals.

LMTO is linearized version of KKR.

Basis is formed as a combination of solutions of Schrödinger
equation inside the muffin-tin sphere.
As usually with linearized methods, it is tuned to a fixed energy
and Taylor expansion is used around.

Employment of the LMTO method often leads to quick results
even for complicated systems.

Disclaimer: The LMTO method is a powerful weapon in the hands
of a powerful (knowledgeable) person.
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What is pseudopotential?

Operator simulating the effect
of [nucleus + core electrons]
on electronic states

in the energy range of interest
(valence states, unoccupied states — i.e. not on any state!)

Requirements, expected properties:

◮ Sufficient accuracy in a wide energy range
(“transferability”)

◮ Real merit to computational efficiency
(“softness”)

◮ reducing the size of the basis set
◮ eliminating large energies of the core states
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Constructing a pseudopotential

The calculation can be only as good as the pseudopotential is.

Pseudo-wavefunction is identical to true atomic wave-function
outside the core region (for a given ℓ and E ):

ψPS

l ,E (r) ≡ ψtrue

l ,E (r) for r > RC .

Equal scattering properties in the neighbourhood of Eref (to the
1-st order).
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Desirable pseudopotential properties (. . . and problems)

The issue of transferability:
Ability to work properly in different environments (e.g., Na can be
in metallic Na or in ionic NaCl).

Two main components:

◮ Ability to reproduce the scattering properties of an AE
potential in some energy interval around Eref — energy

transferability.

◮ Ability to reproduce all-electron eigenvalues under varying
external conditions, i.e., under varying charge density —

environmental transferability (among different compounds).

Whether the given pseudopotential is really suitable for the problem
we solve is often hard to find out (and usually tacitly ignored).
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Pseudopotentials and plane waves and localized orbitals

Most often, pseudopotentials are used in connection with plane
waves codes (because the pseudopotential is weak and only
a decent number of plane waves are needed).

Common trick: Use a plane waves pseudopotential code to
optimize geometry (quick) and then use a FLAPW code to
calculated electronic struture (accurate).

Pseudopotentials can be used also with localized orbitals.
(First use of pseudopotential dates back to Fermi and atoms in 1934.)
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Accuracy of band structure calculations (1)

Geometry and bulk modulus of bulk systems

lattice constant [Å] bulk modulus [Mbar]

Al 4.01 0.82 theory
4.03 0.79 experiment

Pd 3.85 2.35
3.88 1.95

Ag 4.00 1.49
4.07 1.09

Si 5.63 0.95
5.43 0.99

Ge 5.63 0.76
5.65 0.76
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Accuracy of band structure calculations (2)

Percentage of interlayer relaxation ∆Dij for several close-packed
hexagonal metal surfaces

∆d12 ∆d23 ∆d34
Al(111) +1.35 +0.54 +1.04 theory

+1.5 +0.5 experiment

Ti(0001) -6.44 +2.64 0.37
-3.5 +1.4 -0.8

Cu(111) -1.58 -0.73 -0.43
-0.5

Pd(111) -0.22 -0.53 -0.33
+1.8 -0.3 +1.4

Pt(111) +0.88 -0.22 -0.17
+1.0
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