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Why are surface structures important?

Similar to the volume:

Structure very influences physical properties!

(e.g. β-Sn (tetragonal, metallic) ↔ α-Sn (cubic, semiconducting)
Fe (bcc, ferromagn.) ↔ Fe (fcc, paramagnet-ferromagn.)
C (hexagonal, graphite) ↔ C (cubic, diamond)

Surface = Interface to the environment

important for (e.g.) contacts

◮ corrosion properties

◮ catalysis

◮ crystal growth

◮ epitaxy (new materials! )

Semiconductor miniaturisation: Surface area / volume gets ever larger

=⇒ Nanophysics
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Real surface - surface with defects

1. a terrace, 2. an emerging screw dislocation, 3. the intersection of an edge
dislocation with the terrace, 4. an impurity adatom, 5. a monoatomic step in
the surface, 6. a vacancy in the ledge, 7. a kink, 8. an adatom upon the ledge,
9. a vacancy in the terrace, 10. an adatom on the terrace.
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Bulk terminated fcc crystal surfaces
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Surface Crystallography
2D 3D

number of space groups 17 230
number of point groups 10 32
number of Bravais lattices 5 17
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Adlayer, reconstruction - notation
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Surface relaxation and reconstruction

a) Relaxation of the topmost atomic layer

b) Reconstruction of the topmost atomic layer

c) Missing row reconstruction (e.g. (2×1)Pt(001)).

GaAs(110) surface: a) Top view

b) Side view

c) Sphere model.
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Methods for structure determination - microscopies
Electron Microscopy (imaging)
for atomic resolution: lens aberrations must be reduced

◮ high electron energies (>50 keV)
◮ high sample penetration
◮ only projection visible
◮ low surface sensitivity
◮ Radiation damage!

Special: Low Energy Electron Microscope (LEEM)
Electrons are retarded just before reaching the surface, so that there is only the surface
penetration wanted.
Resolution reached: ≈ 5 nm.

Scanning tunneling microscopy

Atomic resolution well achievable

◮ only top layer imaged
◮ electronic surface corrugation is

imaged (rather than atoms).
Missing row Pt(110)
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Methods for structure determination - microscopies
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Methods for structure determination
- diffraction methods

only intensities can be measured (
”
phase problem“)

=⇒ ” trial-and-error“methods to find the structure
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Methods for structure determination
- diffraction methods

Low Energy Electron Diffraction (LEED = E ≲ 600 eV) 
ideal surface penetration (5-10 Å), experimentally “easy”.

Yet: Determination of atomic positions complicated by 
multiple electron scattering. Accuracy  < 0.1 Å. 

Reflection High-Energy Electron Diffraction (RHEED) (E ≤10 keV). 
Multiple scattering less pronounced  
=> simpler data evaluation compared to LEED (many beams!).

Yet: to get surface sensitivity, (very) oblique incidence
necessary; many beams; intensity measurement difficult.

Photo-Electron Diffraction (PED ) 
Angular Resolved Photo-Electron Spectroscopy (ARPES) 
Similar to LEED, except that a surface atom acts as electron 
source. Accuracy similar to LEED.

Surface Extended X-ray Absorption Fine Structure (SEXAFS)
Only sensitive to bond lengths
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Diffraction methods
- tools for surface topography
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Low Energy Electron Diffraction ( LEED )
LEED is the principal technique for the determination of surface structures.
It may be used in one of two ways:

Qualitatively : The analysis of the spot positions yields information on the
size, symmetry and rotational alignment of the adsorbate unit cell with
respect to the substrate unit cell.

LEED Si(111)7×7 RHEED Si(111)7×7

In the LEED image we can distinguish six additional

spots between strong (0,-1), (0,0) and (0,1) patern.

In the RHEED-image we see six Laue-circles repre-

senting distorted order situated between the zero or-

der Laue-circle and the first order Laue-circle.

LEED c(2 × 2) O on Ru(001)

Quantitatively : The intensities of the various
diffracted beams are recorded as a function of
the incident electron beam energy (I-V curves).

The comparison with theoretical curves may pro-
vide accurate information on atomic positions.
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LEED is surface sensitive
surface sensitivity and wavelength are almost ideal at the same energy
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E = 150 eV =>   = 1 Å 
ideal because of the order of atomic 
spacings => large di"raction angles

λ

Low energy electrons interact strongly with matter: electron mean free path λ is small.
Only electrons scattered from near surface can leave the surface.

The observation of a LEED pattern does not a guarantee that the surface is ordered:
The coherence length of a standard LEED optics is only 10-20 nm!
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Electron scattering on 2D lattice
◮ Electron wave length: λ =

h
p

=

√

h2

2mE
=⇒ λ[nm] ≈ 0.1

√

150
V [eV ]

◮ Elastic scattering: Ef = Ei

◮ Interference:

Intensity = Structure factor * Interference function
(unit cell geometry) (scattering characteristics)

Maximum of interference function for ~k f
|| =

~k i
|| + ~g

~a1, ~a2 : ~r -space, ~ai ∗ ~bj = 2πδij
~b1, ~b2 : ~k -space, ~g = h ~b1 + k ~b2

Laue conditions: ~a1 · (~k f − ~k i ) = 2πh

~a2 · (~k f − ~k i ) = 2πk

Bragg relation: dhk = (sinΘf − sinΘi) = nλ

Θf , Θi - angle between the incidence/reflected beam and the surface normal
dhk - interlayer distance, Θf = Θi - mirror reflection
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Ewald construction
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Interpretation of LEED experiment
◮ Simple: Kinematic theory (single scattering)

Size, shape and symmetry of surface unit cell,
Superstructures, domains only if long-range ordered
No information about atomic arrangement within the unit cell

◮ Less simple: Kinematic theory
Deviations from long-range order: Spot width −→ domain size
Background intensity −→ point defect concentration
Spot splitting −→ atomic steps

◮ Difficult: Dynamical theory (multiple scattering)
Spot intensities I(E0) or I-V curves −→ structure within unit cell

Increasing the incident beam
energy means increasing 1/λ,
i.e. more diffraction beams.

Experimental spectrum is total different from ki-
nematic approximation. This is not an ”approxi-
mation“for LEED intensity! We need to consider
multiple scattering / diffraction.
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LEED - interference
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LEED - spot intensities
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Scattering of low energy electrons
- elementary introduction into the theory

◮ Translation symmetry: V (~r) = V (~r + m ~a1 + n ~a2),

ψcr (~r) = ei ~k||~r U ~k||
(~r )

◮ muffin-tin potential from the selfconsistent surface el. struct. calculation
◮ optical potential - fenomenological description of nonelastic processes

◮ scattering on an atom - described in spherical wave basis δl

◮ scattering on an atomic layer - reflection and transmission matrices
R±±

~g~́g

◮ scattering on stack of atomic layers - in plane wave basis
23



Atomic scattering
Polar angle representation more intuitive:

rather large
scattering
anisotropy

The higher the 
energy the more
pronounced is 
forward scattering
(with backscattering
usually reduced)

chemical sensitivity
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Surface diffraction

There is multiple interlayer diffraction

for 2 layers

The procedure can be iterated: „Layer doubling“
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LEED - multiple scattering process
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Comparison of calculated and measured data

To find the correct structure, 
the exp. spectra must be 
reproduced by model calculations

� one needs a quantitative 
measure to compare spectra

� R-factors 
(”reliability factors”, 

as widely used in XRD)

At the time being, mainly two different R-factors are used:

a) mean square deviation

Similar mean square deviation,
though spectral features are better
reproduced on the left.

b) Pendry R-factor

Conceptional idea: 
The location of both maxima and minima 
reflect the structure because they mirror 
de- and constructive interference. 
The height of maxima is less important, 
all maxima (small or high) are equally 
important!!
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Pendry R-factor

=> use transformed spectra
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Experiment versus theory - an example
trial and error method

RZJ =
AZJ

δE

∫

ω(E)|cI′th − I′exp|dE

where c =
∫

Iexp∫
Ith

, ω =
|cI′′th−I′′exp|

|I′exp|+ǫ
, ǫ = |I′exp|max

empirically: R = 0.2 - good, R = 0.35 - mediocre, R = 0.5 - bad agreement

Rtot =

∑

~g R~g∆E(~g)
∑

~g ∆E(~g)

Example: (
√

3 ×
√

3)30o S on Pd(111)

Simplest model:

◮ three adsorption sites respect observed
symmetry of diffraction patterns (top, fcc, hcp)

◮ only top surface layer distance d⊥ varied

◮ surface barrier hight V0r is an other parameter

=⇒ searching the minimum of Rtot(d⊥,V0r )
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(
√

3 ×
√

3)30o S on Pd(111)

Contour plot from the LEED R-factor analy-

sis for the hollow 1 site.
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Tensor LEED

Experience: if structural parameters
are changed gradually, the spectra 
change gradually, too

Can we get the changing spectra by the 
perturbation of a reference spectrum?

 Scattering of a displaced atom

Scattering factor of 
the undisplaced atom: t j

Scattering factor of 
the displaced atom: t t t rj j j j' ( )= +δ δ

r

How to calculate               

In short notation: δ δ δ δt r P r t P r tj j j j j j( ) ( ) ( )
r r r

= −

propagate to the 
new position!

scatter! propagate back to 
the old position!

(All this is done in angular momentum space, so the quantities P and t are matrices)
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Tensor LEED
The atomic displacement cause a change in the scattering amplitude 
of  the total surface. In 1. order perturbation this can be written as δ ψ δ ψA tj f j i=< >| |

In angular momentum representation this writes as δ δA T tj jLL

LL

jLL=∑ '
'

'

with the tensor T depending only on the unperturbed structure (=reference structure)

For many displaced atoms: δ δA T tjLL

j LL

jLL= ∑ '

; '

'
(This is 1. Born (i.e. kinematic) approximation 
with respect to the scattering atδt j

The intensity of the new structure is simply:

I A A= +0

2
δ

Once the Tensor has been computed, 
the new intensity results just by 
matrix multiplications

In many cases atoms 
can be displaced by
as much as 0.5 Å off
the position in the
reference structure
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Structure of the Fe3O4(111) surface
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Atomic force minimization

Hellmann-Feynman teorem

HΨ = EΨ
depending on some parameter λ

∂E
∂λ

=
∂

∂λ
< Ψ|H|Ψ > = < Ψ|∂H

∂λ
|Ψ > +E ∂

∂λ
< Ψ|Ψ >

∂E
∂λ

= <
∂H
∂λ

>

In adiabatic approximation (Born-Oppenheimer):

H = H({ ~RI}) = T + Uee + UeI({ ~RI}) + UII({ ~RI})

=⇒ total energy E({RI}) and the force on the J-th atom

− ∂

∂XαJ
E({RI}) ≡ FαJ =

∫

d3r
e2(~r − ~RJ)α

|~r − ~RJ |3
(n+(~r)− n(~r))
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Surface relaxation

◮ Surface atoms push for increasing the number of bonds
=⇒ surface layer relaxed usually inwards.

◮ Interlayer distances are usually oscillating from the top surface to bulk.

First-principle LDA calculations [Bohnen, Ho] - d in %

Al(110) ∆d12 -6.8 Cu(110) ∆d12 -9.3 Na(110) ∆d12 -1.6
∆d23 0.0 ∆d23 2.8 ∆d23 0.0
∆d34 -2.0 ∆d34 -1.1 ∆d34 0.6

Al(100) ∆d12 1.2 Cu(100) ∆d12 -3.0 Au(110) ∆d12 -9.2
∆d23 0.2 ∆d23 0.1 (1×1) ∆d23 7.7
∆d34 -0.1 ∆d34 -0.2 ∆d34 0.7

Al(331) ∆d12 -11.3 Cu(111) ∆d12 -1.3 Au(110) ∆d12 -16.0
∆d23 -6.3 ∆d23 0.6 (1×2) ∆d23 2.0
∆d34 10.1 ∆d34 -0.3 ∆d34 3.0
∆d45 -4.4 - z3 7.0
∆d56 -1.8 - y2 0.05 Å
∆d67 4.8 - -
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0.5 ML Co on p(1×2)Pt(110)

Comparison: LEED and DFT results
Parameters LEED DFT
b1 -0.01±0.03 -0.11
∆d12 -0.31±0.01 -0.40
p2 0.09±0.05 0.08
∆d23 +0.14± 0.03 +0.17
b3 +0.07±0.04 +0.06
∆d34 -0.04± 0.0025 -0.05
p4 0.04±0.04 0.02
∆d45 +0.00± 0.024 +0.00
b5 +0.03±0.04 -
dbulk 1.386 1.385
RPendry 0.24 -

Here, dij denote the averaged vertical distance between layer i and layer j , bi

and pi represent the buckling and lateral displacements (pairing) of the atoms

in the layer i , respectively. All values are given in Å.

a = 3.92 Å

p2 p4

b1

b3

d12

d23

d34

d45

1
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Total energy calculations

See the accuracy of calculations! (1 htr = 27.2 eV)
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Summary
◮ Electronic structure ⇐⇒ geometric structure

close related (Did the chicken come before the egg?)

◮ Surface:
◮ ideal ⇐⇒ real (relaxation, reconstruction, defects, ...)
◮ vacuum, T = 0 ⇐⇒ atmosphere, T > 0

◮ Investigation of structure: microscopy ⇐⇒ scattering methods

direct methods: what we see?, indirect methods: trial and error scheme!
◮ Electrons of energy 20 - 500 eV are surface sensitive, strong interaction with

surface atoms: =⇒ KINEMATIC MODELS no suitable!!!

◮ Tensor LEED - combination of perturbation theory and full dynamical
calculations (small/large elementary cell −→ simple/complicated analysis)

◮ LEED simulations use results of charge distribution: potential

◮ Closed packed surfaces relaxed slightly (a few % of bulk interlayer distance),
open surfaces relaxed strong (up to 20%).

◮ Equilibrium ≡ minimization of free energy, i.e. for T = 0 minimization of
system total energy. Forces acting on an atom −→ 0, can be evaluated.

◮ To understand electronic charge redistribution in the surface region the
electronic structure calculations are needed.
(next: electronic structure from bulk =⇒ surface)
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