
Solid surface as a physical problem

Beďrich Velický, Frantǐsek Máca
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Introductory remarks

• This course concerns
theoretical aspects of surface physics

• A few themes selected from a vast area 
• All belong to the essentials 
• The lectures address more physical aspects than 
technicalities  ⇒ suited for experimentalists



Surface as a physical problem
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Four aspects

   IMPLICATIONS FOR THE SURFACE THEORY

atomicall "the worst of all interfaces"y clean
     surface   interface to vacuReal surfa mces u→ ≡

DISBALANCE OF 
BONDING  FORCES

Surface tension;
Structural changes:  relaxation, reconstruction

ELECTRON DENSITY  
HIGH    → LOW

Surface dipole,  surface barrier
Local   → non-local  electron exchange

SUBSTRATE vs.  
ADSORBATE

Substrate: semi-infinite …  a reservoir
Continuous energy bands, extended electron states
× Adsorbate: discrete levels localized states
Meeting in the sensitive surface area

COMPENSATIONS IN  
TOTAL   ENERGY

Considerable variability of surface structures
“vulnerability of surfaces”



Implications for the surface theory
as a path to interpretation and prediction of experiments

• “empirical rules” & model intepretations often uncertain

• decision only possible by highly accurate ab initio calculations

• the problem of surfaces is a part of the general problem of
condensed matter
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• understanding  the results
• generalization
• classification
• prediction

WHY

very tricky



Digression: What happened 40+ years ago?
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IN  EXPERIMENTAL  TECHNIQUES
• UHV
• MBE
• new surface probes
• dedicated  SR sources

Tantalus at SRC U. Madison-Wisconsin 1968

IN  THEORETICAL   TOOLS
• LDA Hohenberg&Kohn 1964, Kohn&Sham 1965
• GW   Hedin 1965, Hedin&S.Lundquist 1967 
• Hubbard Hamiltonian   1964 → LDA + U
• IIIrd generation computers:  IBM 360  1964
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The paradigm of condensed matter theory 

THE PARADIGM [“theory of everything”] All Condensed Matter systems and processes 
can be fully described using  ordinary non-relativistic quantum mechanics/statistics 

• the problem of surfaces is a part of the general problem of
condensed matter  theory

very tricky
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The paradigm of condensed matter theory 

EXPERIMENTAL SETUP                             THEORETICAL COUNTERPART
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IMPLEMENTATION   -- as a parallel between the experiment and its  theoretical image 
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(1) sample … atomic composition
atoms → nuclei + electrons

OR ions    + valence electrons
(2) Schrödinger equation … at T = 0

(3) ground state (equilibrium at T = 0 )

Standard procedure of the 
computational   materials  science
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(4) Adiabatic approximation
heavy sluggish nuclei source of a classical external  

electrostatic field for the electrons
light nimble electrons   follow immediately “adiabatically” 

the positions of the nuclei
 form a glue between the nuclei
 stabilize the electrostatic structure 
… uncertainty relations 

Standard procedure of the 
computational   materials  science  cont’d
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(4) Adiabatic approximation cont’d
adiabatic total energy  neglect completely kinetic energy  

of nuclei

Standard procedure of the 
computational   materials  science  cont’d
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(4) Adiabatic approximation cont’d
adiabatic total energy  neglect completely kinetic energy  

of nuclei

When does the adiabatic approximation fail
 electron – phonon interaction
 primary ion in SIMS,  etc.

Standard procedure of the 
computational   materials  science  cont’d
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(4) Adiabatic approximation cont’d
adiabatic total energy  neglect completely kinetic energy  

of nuclei

When does the adiabatic approximation fail
 electron – phonon interaction
 primary ion in SIMS,  etc.

          
(5) Finally, we arrive at a truly difficult stage.

Approximate description of many electrons pair-wise 
interacting by the Coulomb force
In solids, this e – e interaction is neither weak nor short-range. 
Simple approximations, weak coupling or the gas 
approximation both fail …

Standard procedure of the 
computational   materials  science  cont’d
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Interacting  electrons  in  solids
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 The Coulomb interaction between electrons is never really weak.
Two traditional opposite limits 

 The itinerant electron theories and their improvements fall under the 
category of ORBITAL THEORIES which dominate today.
 The orbital theories include the shell model of atoms, the molecular 
orbital theory in QCh, the band model of solid crystals.
 Problem Take Hartree - Fock, the archetype of orbital theories; HF 
electrons are independent, do not catch up the e - e correlations

 Possible improvements to HF
Configuration Interaction  QCh  Pople
Kohn - Sham orbitals        CM    Kohn

electrons delocalized  itinerant localized   bound 

e – e interaction pair interaction →
HF  mean field approximation

pair interaction at a distance 
site to site exchange integrals

quantum chemistry Hund - Mulliken LCAO Heitler – London  Valence Bond

magnetism Stoner - Slater  band magnetism (Dirac) – Heisenberg Hamiltonian

" "Ψ→

[ ]H Ψ

[ ]HFH Ψ

correlation energy

NP
1998
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Sorting out the orbital theories
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These you may encounter

orbital   theories

ab initiomodel/semi-empirical

exact (beyond  HF)1-electron approx.

LDA  +  U

no 
"id

cor
eal"  

relat
case

ions additional
correlatio

 approxima
ns inc

tions
n

orp

ece

orated

ssary

not suited for total energy

sensitive to parametrization

uses:

heuristics

parameters from ab initio
interpretation of ab initio self-consistent

Hartree-Fock       best
Roothaan
Slater Xα
Hartree
Thomas-Fermi
CNDO et al.        worst

density functional  LDA
quasiparticles   GW

natural orbitals

independent electrons
extended Hückel
Harrison param.



Why everybody likes the orbital theories
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…. a universal simple method: instead of SR for N(e)=2, 92, …,1028 electrons …
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Ion of hydrogen molecule  
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Ion of hydrogen molecule  
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Occupation of energy levels in an atom

The electron in a H+
2 ion always occupies one orbital (solutions of the

Schrödinger eq.) depending on its energy.

For many-electron atoms the Schrödinger eq. cannot be solved analytically!

1. The spatial arrangement of the atom is characterised by the same set of
orbitals as for the one-electron hydrogen atom.

2. The orbitals are filled successively with the atom’s electrons. In the
ground state of the atom each electron prefers to fill the orbital which is
lowest in energy. There are well-working rules (Madelung’s rule, Hund’s
rules) of thumb for the ordering of the orbitals.

3. The number of electrons within a specific orbital is limited to a maximum
of two by the Pauli exclusion principle: A quantum state specified by the
four quantum numbers n, l , m and σ can be possessed by at most one
particle at the same time. There are two quantum states associated with
each orbital (spin).



Occupation of energy levels in an atom - empirical rules

The energy of a specific orbital is determined by the mean distance to the
positively charged nucleus. But in many-electron atoms it is also dependent on
the mutual repulsion of the electrons and the screening of the nuclear charges
by inner electrons.

Madelung’s rule

I The energy ordering is from lowest value of n + l to the largest.

I When two orbitals have the same value of n + l the one with smaller n is
filled first.

Hund’s rule - regarding the m-degeneracy

I The number of unpaired electrons is maximized.

I Such unpaired electrons possess parallel spins, thus maximising the total
spin of the outermost orbital.
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HF energy levels
in atoms

degeneracy
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Occupation of energy levels in atoms
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Occupation of energy levels in atoms



RITZ - GALERKIN
Schrödinger eq. → matrix problem

!!   OPW !! 
APW

LCAO

Digression: how to solve the Schrödinger eq.
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X - ray maps of electron density
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rock salt                                               diamond



The end
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