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Introductory remarks

e This course concerns

theoretical aspects of surface physics
e A few themes selected from a vast area
e All belong to the essentials

e The lectures address more physical aspects than
technicalities = suited for experimentalists




Surface as a physical problem

Real surfaces

%

surface = Interface to vacuum

wically clean "the Worstjf all interfaces"

Four aspects

DISBALANCE OF
BONDING FORCES

Surface tension;
Structural changes: relaxation, reconstruction

ELECTRON DENSITY

HIGH — LOW

Surface dipole, surface barrier
Local — non-local electron exchange

SUBSTRATE vs.
ADSORBATE

Substrate: semi-infinite ... a reservoir
Continuous energy bands, extended electron states

X Adsorbate: discrete levels localized states
Meeting in the sensitive surface area

COMPENSATIONS
TOTAL ENERGY

IN

Considerable variability of surface structures
“vulnerability of surfaces”

eo ® |MPLICATIONS FOR THE SURFACE THEORY




Implications for the surface theory

as a path to interpretation and prediction of experiments
« “empirical rules” & model intepretations often uncertain
« decision only possible by highly accurate ab initio calculations

* the problem of surfaces is a part of the general problem of
condensed matter
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Digression: What happened 40+ years ago?

IN EXPERIMENTAL TECHNIQUES
UHV
MBE
new surface probes

dedicated SR sources
Tantalus at SRC U. Madison-Wisconsin 1968

IN THEORETICAL TOOLS
LDA Hohenberg&Kohn 1964, Kohn&Sham 1965
GW Hedin 1965, Hedin&S.Lundquist 1967
Hubbard Hamiltonian 1964 — LDA + U
llird generation computers: IBM 360 1964




The paradigm of condensed matter theory

very tricky,
« the problem of surfaces Is avpart of the general problem of

condensed matter theory

THE PARADIGM [“theory of everything”] All Condensed Matter systems and processes
can be fully described using ordinary non-relativistic quantum mechanics/statistics
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Standard procedure of the
computational materials science

experiment
Recall:

theory numerics
(1) sample ... atomic composition
atoms — nuclei + electrons

OR ions + valence electrons
(2) Schrodinger equation ... atT =0

HP(R,r)=E¥(R,r), R={R;},J=123. .nuclei
r = {rg}, ¢ =1,2,3...electrons
(3) ground state (equilibriumatT =0)
VARIATIONAL PRINCIPLE

H[¥]

\J (H)=min o(H)=0
o (H)=(¥ |H |¥) = internal energy 15

lTll



Standard procedure of the
computational materials science

(4) Adiabatic approximation
heavy sluggish nuclei source of a classical external
electrostatic field for the electrons
light nimble electrons » follow immediately “adiabatically”
the positions of the nuclei
form a glue between the nuclei
stabilize the electrostatic structure
... uncertainty relations

Y(R,r),

e

#(R1)

R,r
H,

I, I>

I |l
C
I,

Il

_|_

(@
I

Il

_|_

Ansatz Y(Rir)=@,(R)-¥,(R,r)

(H, +U,. )#7(R,r) = E(R)-¥,(R,r) electrons
(Hn +£e(R))¢n(R) =E-@ (R) nuclei



Standard procedure of the
computational materials science

(4) Adiabatic approximation
adiabatic total energy neglect completely kinetic energy

of nuclei
E(R)=U,,(R)+E(R) total adiabatic energy
VR E(Ry)=0, -E(R)=0 equilibrium geometry
E(RO) equilibrium energy
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Standard procedure of the
computational materials science

(4) Adiabatic approximation
adiabatic total energy neglect completely kinetic energy

of nuclei
E(R)=U,,(R)+E(R) total adiabatic energy
Vs E(RO) =0, afm E(R)=0 equilibrium geometry
E(RO) equilibrium energy

@

When does the adiabatic approximation fail
® clectron — phonon interaction
® primary ion in SIMS, etc.

Approximate description of many electrons pair-wise
Interacting by the Coulomb force
In solids, this e — e interaction is neither weak nor short-range.

Simple approximations, weak coupling or the gas
approximation both fail ...



Interacting electrons in solids

® The Coulomb interaction between electrons is never really weak.
® Two traditional opposite limits

electrons

delocalized itinerant

localized bound

e — e interact

: pair interaction —
ion

HF mean field approximation site to site exchange integrals

pair interaction at a distance

guantum chem

istry | Hund - Mulliken LCAO

Heitler — London Valence Bond

magnetism

Stoner - Slater band magnetism | (Dirac) — Heisenberg Hamiltonian

® The itinerant electron theories and their improvements fall under the
category of ORBITAL THEORIES which dominate today.

® The orbital theories include the shell model of atoms, the molecular
orbital theory in QCh, the band model of solid crystals.

® Problem Take Hartree - Fock, the archetype of orbital theories; HF

electrons
H %]

H[#] \\J

are independent, do not catch up the e - e correlations

® Possible improvements to HF

\.J I correlation energy

% IITII

Configuration Interaction Pople] NP
Kohn - Sham orbitals Kohn | 1998
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Interacting electrons in solids

® The Coulomb interaction between electrons is never really weak.
@ Two traditional opposite limits

electrons delocalized itinerant localized bound

pair interaction — pair interaction at a distance

2 — @ lEEelen HF mean field approximation site to site exchange integrals

guantum chemistry | Hund - Mulliken LCAO Heitler — London Valence Bond

magnetism Stoner - Slater band magnetism | (Dirac) — Heisenberg Hamiltonian

® The itinerant electron theories and their improvements fall under the
category of ORBITAL THEORIES which dominate today.

® The orbital theories include the shell model of atoms, the molecular
orbital theory in QCh, the band model of solid crystals.

® Problem Take Hartree - Fock, the archetype of orbital theories; HF

electrons|are independent, do not catch up the e - e correlations
H [SU\HF] ® Possible improvements to HF
; . . &) np
H [W\] Kohn - Sham orbitals Kohn [ 1998
\.J I correlation energy -

% IITII



Sorting out the orbital theories

orbital theories

Y

model/semi-empirical

not suited for total energy
sensitive to parametrization
USES:

heuristics

parameters from ab initio
interpretation of ab initio

independent electrons
extended Huckel
Harrison param.

LDA + U ab initio
1-electron approx. exact (beyond HF)
"Ideal" case correlations incorporated
no correlations additional approximation/s
Y j

self-consistent

These you may encounter

Hartree-Fock
Roothaan
Slater X«
Hartree
Thomas-Fermi
CNDO et al.

best

worst

density functional LDA
quasiparticles GW
natural orbitals

22




Why everybody likes the orbital theories

.... a universal simple method:

(I.) one-electron Schrodinger equation
~ 2 AV (N, (1) = E, v, (1)

(II.) Many-electron state = sequence of occup. numbers {n__}
e add spin o =T, !
e Pauliprinciple 0<n_, <1
e Aufbau principle fill from the bottom up

(1) Charge balance Xn__=N:" +N{® =N =37

defines Fermi energy 1 ... HOMO highest occupied
N, = fFD(Ea)l
(IVV.) Observables
local particle density n(r)=n.(r)+n(r)
local spin density m(r)=n,(r)—n,(r)

n, (r)=(fi (r)) = an|:7ym)_(r)|2 orbital interpretation
double average

+e’C%) LUMO lowest unoccupied
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lon of hydrogen molecule H;

PA(r) =wig0(r —T4), @a(r) =wie(r —rg) P

Wy =Ng(pa+@g) sSymmetry!!! =
v, =Ny (pa—9s) Symmetry!!! <

TERUIE T L] D Sl Farte ULl ) (i

1z



lon of hydrogen molecule H;
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Occupation of energy levels in an atom

The electron in a H, ion always occupies one orbital (solutions of the
Schrddinger eq.) depending on its energy.

For many-electron atoms the Schrodinger eq. cannot be solved analytically!

1. The spatial arrangement of the atom is characterised by the same set of
orbitals as for the one-electron hydrogen atom.

2. The orbitals are filled successively with the atom’s electrons. In the
ground state of the atom each electron prefers to fill the orbital which is
lowest in energy. There are well-working rules (Madelung's rule, Hund's
rules) of thumb for the ordering of the orbitals.

3. The number of electrons within a specific orbital is limited to a maximum
of two by the Pauli exclusion principle: A quantum state specified by the
four quantum numbers n, I, m and o can be possessed by at most one
particle at the same time. There are two quantum states associated with
each orbital (spin).



Occupation of energy levels in an atom - empirical rules

The energy of a specific orbital is determined by the mean distance to the
positively charged nucleus. But in many-electron atoms it is also dependent on

the mutual repulsion of the electrons and the screening of the nuclear charges
by inner electrons.

Madelung’s rule

» The energy ordering is from lowest value of n+ / to the largest.

» When two orbitals have the same value of n+ | the one with smaller n is
filled first.

Hund’s rule - regarding the m-degeneracy

» The number of unpaired electrons is maximized.

» Such unpaired electrons possess parallel spins, thus maximising the total
spin of the outermost orbital.



HF energy levels
INn atoms
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Digression: how to solve the Schrodinger eq.

one-electron Schrodinger equation
— L A+V (D), (1) = E, (1)

direct methods

on-shell at E
matching of the wave function
(boundary conditions)
textbook approach

variational methods

RITZ - GALERKIN
Schrodinger eq. — matrix problem
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X - ray maps of electron density
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The end
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