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This class ...

... Isan introduction into the
microscopic physics of adsorption
two model treatments of chemisorption of atoms
a sequence of simple models of electronic states
culminating with the Anderson-Grimley-Newns m.
semi-infinite jellium with adsorbates as a model
treated in LDA ... an ab initio approach



Adsorption of atoms

Adsorption
Physisorption Chemisorption
weak long range forces (v.d.W.) true chemical bond
Description
Dynamical Adiabatic
full process in time static nuclei, no time

UNEVEN PARTNERS

ATOM
isolated

BULK “surface

mechanical molecule” f_dls((j:relte Ievebls
thermodynamic Ixed el. number
framework

energy bands
electron pool Eg



Questions the adiabatic theory may answer

Trustworthy answers are given by a fully ab initio theory at the cost of an
extensive computational effort;
models provide illustrative partial results of a limited relability achieved in a
“cheap” manner

STANDARD AB INITIO

| QUESTIONS AT TWO LEVELS |
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[J adsorption energy
Epps = E(clean)+E(atom) — Erqr 20
[ adsorption site
[ adsorption geometry
] vibrational properties
100
[J chemical bond + electron structure

[1 electronic properties



Model one-electron Hamiltonians

to study in a non- selfconsistent way the
orbital structure of electrons near a
surface with adsorbates

(instead of the inner “green” loop)



One-electron potential at a clean surface

* atomic around each site
e periodic in the bulk
« the zero fixed by the barrier with respect to infinity in the vacuum

« the potential inside may be smoothed using the pseudopotential
concept
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mmm) MODELS I. AND II.
of Lecture 3.



One-electron potential with an adatom

* atomic around each site
e periodic in the bulk
« the zero fixed by the barrier with respect to infinity in the vacuum

< the potential inside may be smoothed using the pseudopotential
concept

¢ the adatom creates a local disturbance just above the surface

VACUUM

ADATOM

mmm) MODELS: A. Sommerfeld
B. tight binding (LCAQO)
C.AGN



What we are going to do

(1.) solve the one-electron Schrddinger equation
_%A +V (r))!//a(r) = Ea l//a (r)

(II.)  Many-electron state = sequence of occup. numbers {n__}
e add spin o =1, !
e Pauliprinciple 0<n__<1

aoc —

o Aufbau principle fill from the bottom up
(111) Charge balance ¥n__ =N +N{® =N® =37,
' . nes Fermi energy
T= n, =9E;—E,)
(IV.) Observables
local particle density n(r) =n,(r)+n,(r)
local-coi . Py P =
o n,(r)=(A,(nN)=Xn,, |wm,(r)|2 orbital interpretation
double average

... HOMO highest occupied

... LUMO lowest unoccupied



Three of the ways to solve the Schrodinger eq.

one-electron Schrédinger equation
— - AV (), (1) = E, (1)

in real space | orbital representation
on-shell at E, Schrodinger eq. — matrix
matching of the wa\{e_functlon problem w=C0,
(boundary conditions) R 2
textbook approach Y((a|H|#)-E(a|m))c, =0
MODEL A. choose simple V(r) # Hy, S
tight binding | orbital representation
on-shell at E, Schrédinger eq. — matrix eq.
basis of atomic-like orbitals basis of fragment eigenstates
sparse matrix techniques Green’s function technique
today a recognized approach elementary use of universal method
MODEL B. fitted matrix elem. MODEL C. AGN




Outline

Schrédinger 1D model
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Schrédinger 1D model



Three of the ways to solve the Schrodinger eq.

one-electron Schrédinger equation
— - AV (), (1) = E, (1)

in real space

on-shell at E,
matching of the wave function
(boundary conditions)
textbook approach
MODEL A. choose simple V(r)




On the way to the Sommerfeld type model A.

CLEAN SURFACE

¢ The smooth pseudopotential bottom is modeled by a completely flat
Sommerfeld plateau

* The barrier is modeled by a step-like abrupt rise from the plateau to
the vacuum zero

P VACUUM

BARRIER

PSEUDOPOTENTIAL

mmm) MODELS |I. Lecture 3



On the way to the Sommerfeld type model A.

SURFACE DECORATED BY AN ADATOM

¢ The smooth pseudopotential bottom is modeled by a completely flat
Sommerfeld plateau

« The barrier is modeled by a step-like abrupt rise from the plateau to
the vacuum zero

 The atomic potential is modeled by an attractive J-well

» Unrealistic model soluble by hand and giving very good insight

VACUUM

PSEUDOPOTENTIAL

ADATOM




MODEL A.| 1D Sommerfeld, step barrier, 5-atom 1

E<O

Er Fermisea

d

region |.

region 11

~AS(x—d)

region I11.

Three parameters V, A,d

Three matching regions




MODEL A.| 1D Sommerfeld, step barrier, 5-atom 2

SUBSTRATE ALONE

we know that as model I. of Lecture 3

RESULT

E<O

T

[hY

;v/\ y‘\_

« standing wave in region I.

¢ exponential leaking into

Er Fermisea

region |.

region Il.

« energy dependent phase shift
needed for smooth matching

region 1.

Solution of the Schrodinger equation by matching A. SEMI-INFINITE SAMPLE

bound states | ',V=ae"‘x+/36‘”°‘ f—;k2=E+V 2. 2 om )
2 5 k +K zh—ZV Eko
-V <E<O0 Il w=ye Zh_m’( -_E
_ 14 _ K
a_lale_ tan4=- w(x)=2Acos(kx + A) X <0
L=lale™ sinA =4 ey
K =2Acos4-e x>0
y=2|a|cosAa cosA:K




MODEL A.| 1D Sommerfeld, step barrier, 5-atom 3

THE J6-ATOM ALONE

reminescent of deuterium

— X
—As(x—d)
Ky :2_r2n,A
A g e
2 A2
d Eb :_m.T
ion 11 ion IlI.
region region select Aso that
—i, |x—d|
y=ce

-V <E, <0

d+w

—Ly" - AS(x—d)y =Ep | [ dx
d-o

L2 (y'(d + @) —y'(d —0)) - Aw(d) = O(w)



MODEL A.| 1D Sommerfeld, step barrier, 8-atom 4

SUBSTRATE + THE 6-ATOM

full model

A = X
LN K-_/\ I y=ae™+pe™
~— ~ I — e’y Se
d -Ad(x—-d) - =Y et
II. y=¢e
region [. region [I.  region III.
2
2 -2xd [ K_
_ ia g —iA & Ze ( Kp )
a=ale, f=lale i e ,
K _|]_e2xd 7Y “2xd
© KLb_l_e—Zk'd (1+y)(’<h |:1 € 1+y]) +(2e K )
tand = kK {42 resonance shifted exponential
Kp broadening
«? |E | For the adsorbate, the atomic bound state dissolves

y= F Ty |E| into a resonance in the bulk band .
The coupling and the resonance width depends on€ «




MODEL A.| 1D Sommerfeld, step barrier, 5-atom 5
SUBSTRATE + THE 6-ATOM

full model A x GLOBAL AND LOCAL
EFFECTS
£=0 vl SN
< 2 NG N
— « locally, the band states
Er Fermi sea g |Adx=d) are strongly affected
« global effect of a single
region . region 1. region I11. atom is small (change in
the phase shift)
1.  quantization k=%Z.n+24

L
2. normalization  [dx |y f=2|a ] L+o(L)}unchanged by the adsorbate
3. density of states g(E) = Ld m_1 L




Refresher

Band filling without spin

a(®) EW(EF)—EEJE 1= Z._‘)(EF E,) general definition
KSEF

n(E)z#\/ZmE-L for LU a suitable for smoothing

WN(E)=-2L+2mE -L, inparticular | & =L [2mE -L

DOS density of states hustota stavi

IDOS
d—E3(E)_5(E) g(E)_Z5(E—Ek) basic form
k

g(E):@-%-L our model

N(E) = jdng(n) g(E)— general definition

20



Refresher

LDOS local density of states

,EF Er LDOS
n(x) = %|y/k(x)| [ dnsm-E)= [ dng(xn) SUMRULEL

—00 —00

9(x.E) = Xl (W[ S(E-Ey)
[dxg( ,E)=%Id i OF S(E-E)=0(E)  SUMRULEII
1

LDOS for our model
2 2
(X E) = e (X)) Lo(E-Ey) =[wicey(¥)| 9(E)

9(d.E) =&l 9(E)

[,

I81%g¢€)




Tight binding model

bl



Three of the ways to solve the Schrodinger eq.

one-electron Schrédinger equation
— - AV (), (1) = E, (1)

| orbital representation

Schrodinger eq. — matrix
problem ,, — Yc,0,
A

Z((2|H ] 1)~ E {2l e, =0

Au A

tight binding

on-shell at E,
basis of atomic-like orbitals
sparse matrix techniques
today a recognized approach
MODEL B. fitted matrix elem.

20
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Tight binding method

E— §E—

t
Uuu N AN

Py — @1
t

L — | orbital representation

T o -
Schrodinger eq. — matrix
—
AN problem , — ;%fﬁ

— ®Pa

Au Au

(a1 E (gl ), =0

1D s-band with nearest neighbor hopping

Write = Copp +Cypy +Co0) + Copy +++-

Schrédinger equation becom

es a difference equation for the coefficients c,

(en—E)ay+Ta, =0 termination of the chain of equations

Ta,+(¢—E)a +ta, =0
ta, + (s - E)a, +ta; =0

ta, +(¢-E)a,,; +ta,,, =0

(to infinity)

The states formaband, e -2t <E<e+2t

(N of the substrate+one dissolved adatom state)

In a chain of N substrate atoms, there are N+1 states

21
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Projected density of states (PDOS)
Again, distinguish the global and the local properties
Orbital occupancy
Probability amplitude =[d*ry, (r)p(r) = (a| @)
n, =Xn, |{a|p)[=IdE feo(E)2S(E-E A lalo)

’ PDOS g,(E)

SUM RULE [dEg,(E)=1

In words, the orbital is spread over all eigenenergies
with the total weight equal to 1.

PDOS for the adatom in our model

9a(E)=25(E-E,) [{alA) Iz=§5(E ~E,) g (E,) [

ga(E)=Ico(E) f 25(E-E,)=|¢(E) -9(E)

e resonant behavior

o width o [T }justllke in the previous model

22
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Anderson-Grimley-Newns model

26



one-electron Schrédinger equation
— - AV (), (1) = E, (1)

orbital representation

Schrodinger eq. — matrix
problem ,, — Yc,0,
A

Z((2|H ] 1)~ E {2l e, =0

Au A

orbital representation

Schrédinger eq. — matrix eq.
basis of fragment eigenstates
Green’s function technique
elementary use of universal method
MODEL C. AGN

Three of the ways to solve the Schrodinger eq.

23
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Anderson - Grimley - Newns model 1

Widely used
Conceptually crucial also today

e System = substrate + adsorbate + coupling
A= Hy + H. + V
While we may visualize these parts in space,

their description is abstract

H :§|b)Eb(b|+ | A>EA(A|+%|b>VbA<A|+h.c.

unperturbed H, perturbation V

Somewhat like "tunneling Hamiltonians"

P.W. Anderson thought about a d-level impurity in bulk
e Not 1D, it may cover any 3D situation, if the bands and
the couplings are properly chosen

28



Anderson - Grimley - Newns model 2

I Schradinger eq.
pand E-H)ly)=0 |y)=a|A+I5b)
I — E, resonance  ((E—E,)a+XV,,f, =0

(E-E,)B, +XVppa =0

—— E, bound state .
A lVbAI secular equation

for the bound state energy

EE+Z

provided it does not fall into the band

Inside the band, the adsorbate level becomes unstable
Golden rule decay rate (for weak coupling)

szTﬂz [Vioa |2 S(E-Ey)

Self-consistent exact equation for

this gives the
resonant energy
its imaginary part

the complex energy of the resonant state

Moal?
E=E +ZE+|b€E

29



Anderson - Grimley - Newns model 3

Dirac identity Making sense of the equation for
1 _
E-E,+0 the complex energy of the resonance

1 .
B, izo(E - E,) NbAl
=EatleoE, *)

NbAl i 2 _
adsorption function X'(E+i0) =2 ¢ 72|V | S(E-Ey)

(self-energy) =A(E) -i4a(E)
First iteration of (*) yields

E=E,+A(E,) — 1i4(E,) agreeswith Golden Rule
EXAMPLE Naon Al

(synopsis of ab initio calculations)
o the level goes down
e broadens
the Fermi energy fixed
o partial occupancy results
Na o Al is more electronegative than Na
e back effect of occupancy on the level

0

28V




Anderson - Grimley - Newns model

A gentle introduction into the kingdom of Green's functions

PDOS

transformation

Green's function

Schrodinger eq.
projected GF

PDOS again

0A(E)=S8(E—E,) [(AIO) P
GA(E) =7 IM(A| ) — (A

E+i0-E,
A 1
G(E+IO)_Z|§>W—IE§<§|
(z—ﬁ>é(z>=i=2|1§><¢| 2

< _ . _ Moal
<AIG(Z)|A>—Z_EA_E(Z).E(Z) R
9A(E) =7 IM(A|G(E +i0) | A)

B 7 A(E)
(E-Ep—A(E))* + 4*(E)

nearly Lorentzian, except for the energy dependence of A and 4

4

1



Anderson - Grimley - Newns model 5
Grimley semi-elliptic model

_——e .

T B N A of the chemisorption function
i - baasial
d m AE)=41- (55"
N >E A(E) by Kramers-Kronig

4, coupling strength, w half-band width

bound states
resonances

Zeros of eq. E—E, —A(E) =0 adsorbate induced {

Two basic situations
%<1 weak coupling %>1 strong coupling

/E—EA

22



Anderson - Grimley - Newns model 6

[ *g. oL“ SuLsﬁra'(':e

gl

A
it

o wide < band &overb\o

navow 4 hano!
o AE)= Al + Aal®

o A[E) = /\3(5) +Aa(E)

adsorbote couplia 4o both

o forms a ‘surface molicuble"
with +he subshale: two Lovels

o indorfevence with Ha s baua
virdaal (ressnant ) Levels

o tobal, wu‘éH- of both Limided by

wmrude o S 1

oin a d metal , Hu Lower

(bonokng) resonauce s occupaied
te upper

(ahuw(uq)rc)ﬂmw is ¢mp5_y

k]



Jellium model

24



Recapitulation of bulk jellium 1
Definition neutral crystal — ionic charge evenly spread

e @ 6
© 0 o

n'=YZ,5(r-R,) > J:%!Jz *rn*(r)

(1 single parameter n=n"
determines all equilibrium properties

0 WIGNER RADIUS volume per electron

l _A4rn
3 (aO Is )
Bohr radius dimensionless parameter

N =1.612x10%r;°

simple metals r,=2...6



Recapitulation of bulk jellium 2

TOTAL ENERGY/ELECTRON atomic units
ror =én t &x T &

—221_ 0916

WIGNER FORMULA
221 _ 0916 _ _0.88"
r?

r, r,+8.7
Jellium is stabilized by exchange

eK(x)+ex(xjrew(x) ——
,k(x;ﬂijxg =
ek(x)

T gp=€n

and further by the correlations .

-
Exor
XC hole

1 2 3

()= "2

EXCHANGE HOLE

BuLL XC molE
&%Txuw (Pawk) ad}iﬁmd‘ Coudarh wpuliiin,
~oppork Ypus lwlna/a‘-n,w M‘]";? AW
o unchn A o Y¢Sl
ot b ““““) Cwok di ffront +)
- (v o
fe=2 10 2 a0
05: 051
32 0. 05 1 15 2 25 3 35 4 4 7| é \;
-+ /o

26



Recapitulation of bulk jellium 3

Ry

-0.06

012

Correlation energy in jellium

o ot e D
Qe‘m\ﬁ' ST Lindg!

W S D

RS

10 r - 20

Wigner ... historical, approx.

compared with QMC
numerical, heavy computation

in practice -- Perdew-Zunger
fit by analytic expressions

" range of previous slide

7



Recapitulation of DFT-LDA 1
Write Euler-Lagrange equations

e’> =0 non-interacting el 's
Eo[n] = 7;[n]+ ] dr’u, (r)n(r)
SEy — usN® =0

51,
sy T 0o(r) =

Here, the solution is known
2
_ZhTEA +UO(r))l//a = Ea l//a

n(r) =Xy, (N}
Ey =Y E, =T, +]drip,n

e'? 20 Kohn-Sham theory
[n] = 7,[n]+ gIn]+ ] dréo(r)n(r)
SE—uSN® =0 u Lagrange multiplier
5T, 5
§n_(r)+6n_(gr)+ U(I‘) =u
%f—/

Uetf (r)
Use the eff. potential as a real one
(_%A + Ueff (r))l//a = Ea l//a
n(r) =Xy, (nf
E=T,+G+]dr’on
E=YE,-[dr’(v,s —v)n+G

This is the complete set of equations
of the Kohn-Sham theory

28



Recapitulation of DFT-LDA 2

35

Exact decomposition

GIn]=4[d°r n(r)Jd3r’|re' An(r) +3 Lid3rn(r)fd®r ’|re'2r,| h<S(r, r")
= U, +Ey. defines KS XC energy
KS XC hole different from the true one, but similar properties

sumrule  [d3r'hS(r, 1) =

XC energy per particle &S (r,n) =3Jd*r' & hi(r, ')

|r r'| XC

Effective potential

o
e (1) = 0(1) + 0y = 0() + 0 () + 5585

Final expression for the total energy

E=YE, U, —drion++Ey.

29



Recapitulation of DFT-LDA 3

For jellium, KS theory is exact

exe(r,n) = exc(n)

LDA Ansatz
ena(r,[n]) = exc(n(r)) defines the LDA XC energy

OE
Xc(r) 5nz<rc) on (ngXC)

LDA KS equations

2
— L A+ 0(r) + 04 (1) + 03 (N, = E, v,
(1) As easy to solve as Hartree or Slater equations

(2) Of course, by iteration in a self-consistent cycle

40



Clean semi-infinite jellium
0 semi-infinite jellium far more realistic than truncated Sommerfeld
'] simplest theory of surface ever -- a single parameter n*or r;
[J treated in DFT-LDA means fully ab initio,
no additional fudging with parameters etc.
[J the calculation permitted to find also total energies, in paticular
the surface energy
0 here, we inspect only a few figures of surface charge distribution
and related quantities (N.D. Lang and W. Kohn, PRB 1(1970), 4555)

W p—posime
BACKGROUND

ELECTRON DENSITY

ENERGY [Atemic Units]

—F

-0

-0 ]
DISTANCE (FERMI WAVELENGTES)

05 0 (5}
DISTANCE [FERMI WAVELENGTHS]

FIG, 2. Self-consistent charge density near metal FIG. 3. Effective one-electron potential gy, with
surface for ;=2 and 7, =5 (uniform positive background electrostatic part ¢, near metal surface (positive back-
model). ground model; 7,=5).

a1



Semi-infinite jellium as a substrate 1

0 semi-infinite jellium (parameter r,) is approached by a point charge Z
[J treated in DFT-LDA means fully ab initio
0 the calculation permitted to find also total energies and the equilibrium
distances of the adsorbed atoms
[0 here, we inspect only a few figures

(N.D. Lang and A.R. Williams, PRB 18(1978), 616)

ENERGY RELATIVE TO WACUUM (&)

42



Semi-infinite jellium as a substrate

Adatom deg (hohra) AE, eV}
H 1.1 1.5
Li 2.5 1.3
[s] 1.1 5.4
Na 3.1 0.9
8i 2.3 3.0
Cl 2.6 3.6
1 I 54 aml«n
SiON A2 () @_ “E""Oﬂ

_ O N ]

3 |\

N @

4 \

2 \

RN

2 2 N -

2 N T——

H ~ =

o \\_____—

g

N

.
al- o
L | |
I 5 20 25 30
4 (BOHR)

@ Lua Laggr abnas

2
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Atomic chemisorption on jellium surface

Model: Semiinfinite jellium 4 an adatom at a distance
d from the edge of the positive background.

Solving the Schrodinger equation at the surface

density <= potential E = E[p (7]
2

[*:*mvz + Verr(p™, 1y, 2)10i(F) = €inhi(T)

E=> e ; p ()= ()P

i occ i occ

> the perturbing potential (Vs — V) is short-ranged due to metallic screening.

CHLORINE SILICON LITHIUM
T

9)

A

VACUUM ETAL

Contours of constant charge density for Cl, Si, and Li atoms on a jellium substrate (rs = 2 a.u.) Upper row: total charge
density. Center row: variation of charge density. Solid (dashed) curves denote a surfeit (depletion) of electron. Bottom
row: bare metal electron density profile. From Wilke and Scheffler, 1996.

a4



Adsorption of isolated adatoms

1O+

AN(e) (arb. units)

0.0

(b)

AN(e) (arb. units)
j=]
&
T

-10.0 -5.0 0.0
Energy (¢V)

a) Adsorbate-induced change of the density of states for three different adatoms on the Al(111) substrate and b) on
jellium with an electron density corresponding to Al. The dashed line indicates the bottom of the band of the substrate.
From Bormet, 1994 (top) and Lang and Wiliams, 1978 (bottom).

Na, ClI - excelent agreement with the induced DOS on jellium
Si - interaction with substrate splits the Si 3p induced resonance
into occupied bonding and empty antibonding states
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The end

46
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