
Chemisorbtion – the basic concepts and models
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This class …

• … is an introduction  into the                                  
microscopic physics of  adsorption

• two model treatments of chemisorption of atoms
• a sequence of simple models of electronic  states 

culminating with the Anderson-Grimley-Newns m.
• semi-infinite jellium  with adsorbates as a model 

treated in LDA … an ab initio approach 
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Adsorption of atoms
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STANDARD AB INITIO 
LOOP

Questions the adiabatic theory may answer
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Trustworthy answers are given by a fully ab initio theory at the cost of an 
extensive computational effort;
models provide illustrative partial results of a limited relability  achieved  in a 
“cheap” manner
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Model one-electron Hamiltonians

to study in a non- selfconsistent way the 
orbital structure of electrons near a 

surface with adsorbates
(instead of the inner “green” loop)

5



One-electron potential at a clean surface
• atomic around each site
• periodic in the bulk
• the zero fixed by the barrier with respect to infinity in the vacuum
• the potential inside may be smoothed using the pseudopotential 

concept

BARRIER

VACUUM

MODELS  I.  AND  II.            
of Lecture 3. 

PSEUDOPOTENTIAL
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One-electron potential with an adatom
• atomic around each site
• periodic in the bulk
• the zero fixed by the barrier with respect to infinity in the vacuum
• the potential inside may be smoothed using the pseudopotential 

concept
• the adatom creates a local disturbance just above the surface

ADATOM

VACUUM

MODELS: A. Sommerfeld
B. tight binding (LCAO)
C. AGN

PSEUDOPOTENTIAL

BARRIER
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What  we are going to do
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Schrödinger eq. → matrix 
problem

Schrödinger eq. → matrix  eq.
basis of fragment eigenstates
Green’s function technique

elementary use of universal method
MODEL C. AGN

Three of the ways to solve the Schrödinger eq.
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 one-electron Schrödinger equati

( ( )) ( ) (

 

)

on

em V Eα α αψ ψ− ∆ + =r r r

orbital representation

ˆ 0( )
H
H c

S

c

E
λµ

λ λ
λ

µ

µ
µ

λ

ψ ϕ

µ µλ λ

= ∑

∑ − =

orbital representation
on-shell at Eα

matching of the wave function
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MODEL A. choose simple V(r)

on-shell at Eα
basis of atomic-like orbitals

sparse matrix techniques
today a recognized approach

MODEL B. fitted matrix elem.

in real space

tight binding
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Outline

Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model
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Outline

Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model
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Outline

Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model
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Outline

Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model
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Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model
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Three of the ways to solve the Schrödinger eq.

2

2

 one-electron Schrödinger equati
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MODEL A. choose simple V(r)
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On the way to the Sommerfeld type model A.

BARRIER

VACUUM

MODELS  I.  Lecture 3

CLEAN SURFACE
• The smooth pseudopotential bottom is modeled by a completely flat  

Sommerfeld plateau
• The barrier is modeled by a step-like abrupt rise from the plateau to 

the vacuum zero 

PSEUDOPOTENTIAL
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On the way to the Sommerfeld type model A.

ADATOM

VACUUM

MODEL A.

PSEUDOPOTENTIAL

BARRIER

SURFACE DECORATED BY AN ADATOM
• The smooth pseudopotential bottom is modeled by a completely flat  

Sommerfeld plateau
• The barrier is modeled by a step-like abrupt rise from the plateau to 

the vacuum zero
• The atomic potential is modeled by an attractive δ - well
• Unrealistic model soluble by hand and giving very good insight
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MODEL A. 1D Sommerfeld, step barrier, δ-atom 1
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MODEL A. 1D Sommerfeld, step barrier, δ-atom 2

x→

V

FE

0E <

Fermi sea

region I. region II.

RESULT
• standing wave in region I.
• exponential leaking into 

region II.
• energy dependent phase shift 

needed for smooth matching

Solution of the Schrödinger equation by matching  A. SEMI-INFINITE SAMPLE
2

22

2
2 2 2

02
2 2

2

Ibound sta e e 
0 e

.

I .
te

I
s ikx ikx

x
m m

m

k E V
k V kV E Eκ

ψ α β
κ

ψ γ κ

−

−

 = + = + + = ≡− < < = = −





( ) 2 cos( ) 0

2 cos e 0x

A k x xx

A xκ

ψ ∆

∆ −

= + <

= ⋅ >0

0

| | e tan

| | e sin

2 | | cos cos

i

i

k

k

k

k

∆

∆

κ

κ
α α ∆

β α ∆

γ α ∆ ∆

−

= =

= =

= =

we know that as model I

SUBST

. of 

RATE ALO

Lect

NE

ure 3

16



MODEL A. 1D Sommerfeld, step barrier, δ-atom 3
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MODEL A. 1D Sommerfeld, step barrier, δ-atom 4
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( )

I. e e
II. e e
III. e

ikx ikx

x x

x d

κ κ

κ

ψ α β
ψ γ δ
ψ ε

−

−

− −

= +
= +
=

S

full model 

UBSTRATE  + THE  -ATOM  δ

2

2

2

2

| | e , | | e

1 e
tan

1 e

| |
| |

b

b

i i

d

dk

Ey
V Ek

∆ ∆

κ

κ

κ
κ
κ
κ

α α β α

κ∆

κ

−

−

−

= =

− −
= ⋅

− +

= =
−

( )
( ) ( )

222

22 22 21
1

2e

| | (1 ) 1 e 2e

b

b

d

d dy
yy

κ

κ κ

κ
κ

κ
κ

ε
α

−

− −−
+

=
 + − − + 

resonance shifted exponential 
broadening

For the adsorbate, the atomic bound state dissolves
into a resonance in the bulk band
The coupling and the resonance width depends on 2e dκ−
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MODEL A. 1D Sommerfeld, step barrier, δ-atom 5
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Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model

22



Schrödinger eq. → matrix 
problem

Three of the ways to solve the Schrödinger eq.
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Schrödinger eq. → matrix 
problem

Tight binding method
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Projected density of states (PDOS)
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Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model
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Schrödinger eq. → matrix 
problem

Schrödinger eq. → matrix  eq.
basis of fragment eigenstates
Green’s function technique

elementary use of universal method
MODEL C. AGN

Three of the ways to solve the Schrödinger eq.
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Anderson - Grimley - Newns model               1
W i d e l y  u s e d
C o n c e p t u a l l y  c r u c i a l  a l s o  t o d a y

  System =  substrate  +  adsorbate  +   coupling
ˆ ˆ ˆ ˆ                                           

  While we may visualize these parts in space,
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ˆ           
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cover any 3D situation, if the bands and

the couplings are properly chosen
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Anderson - Grimley - Newns model               2
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Anderson - Grimley - Newns model               3
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Anderson - Grimley - Newns model               4
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Anderson - Grimley - Newns model               5
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Anderson - Grimley - Newns model               6
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Schrödinger 1D model

Tight binding model

Anderson-Grimley-Newns model

Jellium model
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Recapitulation of bulk jellium             1
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Recapitulation of bulk jellium           2

32
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Recapitulation of bulk jellium           3

0                        10            20sr →

0
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Recapitulation of DFT-LDA           1

34
This is the complete set of equations 

of the Kohn-Sham theory
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Recapitulation of DFT-LDA           2
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Recapitulation of DFT-LDA           3
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For jellium, KS theory is exact  

LDA  Ansatz

LDA KS equation
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to solve as Hartree or Slater equations

(2)  Of course, by iteration in a self-consistent cycle
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Clean semi-infinite jellium                       
 semi-infinite jellium far more realistic than truncated Sommerfeld
 simplest theory of surface ever -- a single parameter or
 treated in DFT-LDA means fully ab initio, 

no additional fud

 

ging wi

 

t

sn r+





h parameters etc.
 the calculation permitted to find also total energies, in paticular

the surface energy
 here, we inspect only a few figures of surface charge distribution

and related quantities (N.D.




 Lang and W. Kohn, PRB 1(1970), 4555)
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Semi-infinite jellium as a substrate        1

 semi-infinite jellium (parameter ) is approached by a point charge 
 treated in DFT-LDA means fully ab initio
 the calculation permitted to find also total energies and the equilibrium

dis

  

tances 

sr Z



of the adsorbed atoms
 here, we inspect only a few fig
N.D. Lang and A.R. Williams, PRB 18(1978)

ur
, 

es
 ( )616

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Semi-infinite jellium as a substrate        2
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Atomic chemisorption on jellium surface
Model: Semiinfinite jellium + an adatom at a distance

d from the edge of the positive background.

Solving the Schrödinger equation at the surface

density⇐⇒ potential E = E [ρ−(~r)]

[− ~2

2m
∇2 + Veff (ρ

−,~r||, z)]ψi(~r) = εiψi(~r)

E =
∑
i occ

εi ; ρ−(~r) =
∑
i occ

|ψi(~r)|2

I the perturbing potential (Veff − V o
eff ) is short-ranged due to metallic screening.

Contours of constant charge density for Cl, Si, and Li atoms on a jellium substrate (rs = 2 a.u.) Upper row: total charge
density. Center row: variation of charge density. Solid (dashed) curves denote a surfeit (depletion) of electron. Bottom
row: bare metal electron density profile. From Wilke and Scheffler, 1996.
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Adsorption of isolated adatoms

a) Adsorbate-induced change of the density of states for three different adatoms on the Al(111) substrate and b) on
jellium with an electron density corresponding to Al. The dashed line indicates the bottom of the band of the substrate.
From Bormet, 1994 (top) and Lang and Wiliams, 1978 (bottom).

Na, Cl - excelent agreement with the induced DOS on jellium
Si - interaction with substrate splits the Si 3p induced resonance

into occupied bonding and empty antibonding states
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The end
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