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This class ...

Is devoted to the many-electron aspects of the solid
state (computational) theory

e explores the many-electron features of the
electronic structure of solids and solid surfaces

e discusses in some detall the jelium model

e explains in detail the original Kohn-Sham Density
functional theory (DFT) and the local density
approximation (LDA)

e outlines its various improvements and
generalizations



General comments
on the many-electron problem



Basic formulation (“standard model”)
1. DOGMA (simplest version) quantum treatment of the assembly

of electronsand nuclei solvesall problemsof atomic systems
2. Adiabatic approximation

Positions and charges of nuclei (ions) ... fixed parameters {R,,Z,}
3. External field (for el.) e Coulomb field of nuclei e specifies the system

electron potential energy

_ e“Z; 2 _ g2
o(r)= Z|r R, & T

4. Total electron charge NEUTRALITY N® =37 (or .. £1,+2,..)
5. TASK OF THE EQUILIBRIUM THEORY

electron | |- Solve the SR ... electron ground state and energy
SUUCHINE] f |y~ |w), A =T +U,+V

equilibr. | 1. Minimize the total energy w. resp. to R; at fixed N )
Sggltr?gtry ViEror|ye =0 E.or=E[R,,N®]+1 ZZ |eRJZJF§,5|
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Qualitative picture (~ for ssimple metals)

Quantum effects

classical elst. system ... unstable. Stabilized by Planck constant 7
AX-Ap U 7 kinetic energy of quantum fluctuations

at the surface leaking of electrons into vacuum

Pauli principle 1.

Aufbau principle .... atoms

Fermisea .... solids

at the surface states from both continuous and discrete spectra

Hartree field o, (r) ... (Coulomb) mean field of electron clouds

compensation of diverging fields and energies
screening -- suppresion of long range Coulomb fields
most of the Coulomb energy absorbed into the mean field part

at the surface electrostatic surface dipole, work function
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Qualitative picture (~ for simple metals) cont'd
Exchange (Pauli I1.) and correlation
kinematic (exchange/Pauli) and dynamical (Coulomb) correlation

guantum fluctuations around the Hartree mean field
eXchange and Correlation g

Hp.anzee Poc|< ) CORRELATED

hole (Hartree-Fock /exact) \@;ﬁ:ﬁ* f iy ?g'f??ﬁ'*«f‘g‘} s
electron digs around itself m:f’:'f‘; 3§ S PO N Oy

- WERERS P (ErEETE Bty
a ditch (XC energy < 0) ... | ok peatld § podid fa:i’f’;:::;; SIS

i . corvelakim hole  screened
cohesion, chemical bond | | TSecH Hedin
spin arrangement ... Hund 's rules, magnetic ordering
at the surface electron and 2AFER pclast  X€ hote  right ab Hhe Surface
Its XC hole detached and I ) }/ _ (far o)
. 3},:. .{1;‘;& e ©®- [MAGE PoTenTIAL
spatlglly §eparated - fiekbis ;,,1 -
classical image potential f mage
chavie fsurface



A neat expression for the total electron energy

N(e)

Hamiltonian H =T +U_, +V

2m pl

V :_zu(ri)=1d3r u(r);a(r—qujd r o(r)|A(r)

e =3 L X =4 d R XX S(r - R) (' - )
1# ] 1# )

o(r-r)o(r'-r)
=5(r—r)o(r'—r)

U,. =5]d°rd®r r|25(r r){z5(r —r)- &(r'=r) }
/“Self-interaction
\_ avoided >

Total energy £:<5U|H |5U>E<H>

n(r)| «—particle density

(HY=(T)+ (V) +Ug) =(T)+1d°% u(r){A(r))+
+3ld%rd g (AN{(r) -5 =N

r=r]

n, (r, r ) pair correlation function




A neat expression for the total electron energy 2

Final form of the total energy

external field «<—potential energy— Hartree mean field

(Hy =(T)+[d®% o(r)n(r) +1]d%rd®r' &= e®_n(r)n(r)

Ir=r7

exchange and correlation

+1]d°rd®r e |(n2(r r')— n(r)n(r))

Ir—r’

%IdBrdSrrlre_rZ”( (ﬁ(r)—n(r))(n(r -n(r"))-A(r)o(r—r’) )

quant. fluct. about mean-field +  excl. SI



A neat expression for the total electron energy 2

Final form of the total energy

external field «<—potential energy— Hartree mean field

(Hy=(T)+[d’ o(r)n(r)+ £/ d°r d® En(r)n(r)

exchange and correlation

+1[d°rd°r & (ny (r,r) = n(nn(r")

Ir—r’

Instead of the unwieldy wave function ¥ it is enough to know
e particle density n dual to the external field

e pair correlation functionn,  dual to the Coulomb interaction




Exchange and correlation hole

Suggestive transformation

1 TZy8(r'-Ry)

(HY =(T)=[d3n(r)[d3 & n*(r)

Ir=rl

+31d°rn(r)[d°r & Ir|n(r)

XC hole
+1d%rn(r)ld°ri P |(”2r$2;)r ) _ n(r'))
h (r, 1)

(HY =(T)+]d°r n(r)o(r) external field

+ %Id rn(r)o, (r) Hartree mean field

+]d%rn(r)e,(r) XC energy per particle
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Properties of the exchange and correlation hole

Ne(r, 1) =052 =0 (r)

EXC(r) =1 Id 3r' |re,2r' Xc(r r ) XC energy per particle

Properties of the XC hole

[ parametric dependence on the electron position

[ for |r—r"|> oo, it holds h, (r, r") — co(decay of correlations)
O sumrule [Jd3r'h (r, r)=-1

] that includes e elimination of SI e XC hole

] decay may be slow: Friedel oscillations

Any reasonable theory must contain these elements
and obey these rules



Jellium



Jelllum: definition

Jellium

Definition

Properties

13

1 model of extended electron systems

1 pedigree: Sommerfeld model

[ ...and its justification

[ central problem of an interaction electron gas:
Long range of Coulomb forces

neutral crystal —  ionic charge evenly spread

e @ @ '
%0%% M

n*=>27,6(r-R,) > njzéffgdgrn*(r)

[ in equilibrium -- homogeneous and neutral
Ngr=N-n*=0

] compensation:
v+, =—0+0=0



Jellium: properties cont'd

1 single parameter n=n"
determines all equilibrium properties

1 WIGNER RADIUS volume per electron

r]-; 4§(a0rs)

Bohrradius[] [ dimensionless parameter
N =1.612x10%r,°
m
simple metals r,=2...6

In k-space  FERMI SPHERE one-el. distr. e diagonal in k
e indep. of interaction

o FY duvce Wf
AD/::;V”‘ _ i k 47Z' k3
Ccad’?(fl‘b&o‘v. N(e)zn .Q 2 (2 )
@2 “5

Q
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Jellium: energetics

Energetics for any kind of energy
E=0 x% =N x%

thermodynamics — % =N X &| <— Microscopic picture

£k "‘% gxc

Eror = Ep T Ex +<9<:
%/_/

EHF
Fermi energy and average kinetic energy
Ep =2k
Ex = 3 e Er
i __h? _ 1
Atomic units  Eg =51 (ak- ) =Ry x3.68x %

15 EK—5EF—Ry><221><—



Jellium: some results

TOTAL ENERGY/ELECTRON atomic units

Exnr =EL + & + &€
TOT H X C -] WIGNER FORMULA

— 2.21 _ 0916 _ 088 R ' ek'(X)iLi);((zc)?;e-e‘?:{:El _
rs2 I, r, +8.7 W L _- ek(x)
Jelliumis stabilized by exchange et
and further by the correlations ..} —
n,(r) h (r r' S
XC hOIe g(r)E 2(2): xc( )+1 Vs
n(r)
EXCMANGE HOLE FuLL XC kolE
&%ﬁ‘ﬁ““k‘ (Pauk) adiﬁma{ Coudo ub Wh‘w
 oppork YpAvs awl.a/a{- A0 Y]MM G(:le-u(
el b Prvada - wsmonzal gt
m:y’ nof =2 00
95: ' | 051~
16 %0, 05 1 15 2 25 8 35 4 g ; é é y

-+ V/to - /R



Correlation energy in jellium -- crucial for LDA

O Correlation energy in jellium
;c;/ e 1 Wigner ... historical, approx.
e ] compared with QMC
_006 | | numerical, heavy computation
| 1 In practice -- Perdew-Zunger
fit by analytic expressions
| range of previous slide
-0.12 'L .
0 10 r - 20
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Density functional theory
(DFT)



Hohenberg - Kohn theorem

Density functional theory

(] 1s an exact many-electron theory in principle

[l true interacting electrons — effective problem of fictitious
non-interacting eletrons

1 yields: n(r), m(r), total energy & (+ other things, perhaps)

[l repeatedly employs the variational principle for the ground state

E=([Hlp)<(/|H|w) iff [@|p)<1
theorem Hohenberg - Kohn| the total energy of a ground state of
Interacting electrons is a unique functional of the electron density

Valid chain ~ o(r) > H —|¥), £ - n(r)
KH theorem claims that the correspondence is unigue:

v(r)—=n(r)

(details of the proof by variational principle - next slide)

19



Proof of the Hohenberg - Kohn theorem

a7 Ho| ¥ n= &7 T + U| ¥+ Adro,n, = Ej+ fidr (v,- v)n > E,

iff |(5U|y/”)<1 L . A y
ar,|Hq ¥,n=&#,|T + U|¥,n+ ndrun, = E, + Adr (v - vy)n, > E
so that: Adr(v,- vy)(K- ny)<O0
T nm(r)a ny(r)
T u(r)avy(r)+cons
v+const. - Y . n= @ |n|¥Pn
] ] ext. field ground state  density
Objections

'] particle density is an excessively reduced quantity
(] is it clear that to given n(r) a v(r) exists?
Answers:

(1 in the field of nuclei, n(r) obeys the cusp conditions, which specify v(r) :

Z =- 1 o, () , L =[r=R_|
n. (O) ara r,—0+
By this example (E. B. Wilson), the correspondence is clare et distincte

[] this problem of "v-representability” resolved by M. Levy and E. Lieb




Variational principle for the energy functional
HK theorem claims the unique correspondence

v(r)—=n(r)

Then n(r) - |¥), € functionals of n(r)

(WIH]2) =T 1)+ (¥ U [9) + (2 V |9)

£,[n]= #[n] +Jdrio(r)n(r)
universal functional v(r) enters
Variational principle (K. - H.)| N =Jdr®n’'(r) fixed

E,[n]=(w|H|%) < (@'[H|p") = (@'|T +U, @) +dréu(r)n'(r)

€ [n]=MinE,[n']
£ [n]=F[n"] +]dro(r)n'(r)
W(e)[n] _ W(e)[n’] ~ N®©

21



Orbital theory of Kohn and Sham
What is F[n]

F[n] =T[n]+U,[n] natural decomposition

F[n] =T, [n]+{T - T, + U, }[n] KS decomposition

G NEW
Tacit adiabatic postulate T, kinetic energy of fictitious
e“%#0 nll v NoT non-interacting electrons
e”=0 nl o, N>, having the same n

We develop two cases in parallel, one is clear and serves as
an aid for the other:

e’ =0 non-interacting el 's e'? 0 Kohn-Sham theory
Eg,, [N]= T, [n]+[driv (rn(r)  &,[n]=7,[n]+g[n]+[driv(r)n(r)

22



Orbital theory of Kohn and Sham

We develop two cases in parallel, one is clear and serves as
an aid for the other:

e'” =0 non-interactingel's e =0 Kohn-Sham theory
E[n] = T,[n]+]driv (r)n(r)  €[n]=7;[n]+gIn]+[driv(r)n(r)

Employ the HK variational principle to find n(r)
f"Ov [n] — Mln EOv[n,] EOU [n] — Mm EOU[H’]
W(E)[n] _ W(e)[n'] ~N®©

23



Exact Kohn - Sham equations
Write Euler-Lagrange equations

e’ =0 non-interacting el 's

£y[n] = 7,[n]+ I dro, (r)n(r)

Sy — pON'® =0

5n(r)+u(r) u=0
EQUATION FOR n(r)

Here, the solution is known
2
—zh—meA +o,(N)y,=E_ v,

n(r) =Xy, (N[
E, =T, +]dr’u.n

£0 — Z Ea
_  OFE
A= Sar®

e'? 20 Kohn-Sham theory
£[n] = 7;[n]+g[n]+[driv(r)n(r)

OF — u59\f(e) =0 u Lagrange multiplier
5,
on(r) T §n(r) +U(r) H= 0

Uett (I’)

Use the eff. potential as a real one

(__A+Ueff(r))wa =E, v,
n(r) = Zly, (n)f

E=T. +]dr'vn +¢
E=YE,-[dr’(vg —v)n+gG

This is the complete set of equations
of the Kohn-Sham theory



Exchange and correlations in KS theory

Exact decomposition

GInl =4I d3rn(r)[d*r' 2&mn(r) + ] d3rn(r) [ d*r &7 hiS(r, 1)
= Uy + Ey defines KS XC energy

KS XC hole different from the true one, but similar properties
sumrule  Jd’r'hS(r, r)=-1

XC energy per particle &go(r,n) = 1Id3r’|re'2r|hx*ff(r, r')

Effective potential

Vet (r)=ov(r)+ §n(r) =v(r)+ OH () + Sn(oy on(r)

Final expression for the total energy

25



Exchange and correlations in KS theory

Exact decomposition

G[n]=4/d° rn(r)Id3r’|r'r|n(r)+1Id rn(r)fd’ e r|hx*ff(r, r)
= Uy + Ey defines KS XC energy

KS XC hole different from the true one, but similar properties
sumrule  Jd’r'hS(r, r)=-1

XC energy per particle &Xs(r,n)=1[dr" & h*(r, r')

Ir—r] 'xc
Effective potential G
5 The formidable
E
Dt (1) =0(T) + 5n(r) =0(r) + oy (N + 5700 Ey functional
Final expression for the total energy IS not known

. resort to approximations
E=YE, U, —[driv n++E,, PP

26 S




Exchange and correlations in KS theory

Exact decomposition

Q

GInl;
=,
KS >
sum 1

XCe

Effeq

Uetr (1

Final

EZZ‘?EQ—UH—Jw Uy

27

The formidable

E,c functional

IS not known

... resort to approximations

This seems to be a standard step, but ...

e DFT has no internal resources for systematically
generating these approximations

e |t has to use the results of other approaches

e It has to rely on physical intuition

(r, 1)

rties

C

ITT _'_LXC



LDA Local density approximation
For jellium, KS theory is exact

‘9xc 2(r,n) = 3xc (n)

CRUCIAL STEP LDA Ansatz

gXC(r [n]) = gxc(n(r)) defines the LDA XC energy

A (1) = 5258 = & (nege (n(r)))

LDA KS equations

L A+0(r) + 0, (N + oM (N, =E, v,
(1) As easy to solve as Hartree or Slater equations

(2) Of course, by iteration in a self-consistent cycle

(3) LDA really works. Two questions e \Why

28 e Could we do better



Why iIs LDA so good

General properties

LDA egs. have the structure of the exact KS egs.

Kinetic and Hartree parts are included in full, "only" v, is approximate
LDA is a parameter-free theory, no fitting, no adjustments

Numerically, LDA is comparatively undemanding, solutions fully converged

Why is LDA so good — qualitative criteria
1. exact in the limit of jellium and the high density limit '”tggﬁg'rﬂgon
2. 1t has a variational principle

3. the LDA XC hole satisfies the sum rule Jd*rh = -1 and similar

BONuzg: &, IS not sensitive to the shape of the XC hole



Why II: &

C
One reason for the success of LDA is that the correlation energy

IS not sensitive to the shape of the XC hole

depends only on gross features of the XC hole

3 2 KS
exc(r,[n]) = 1jd r’|r'e |hxc (r, r’)
| S—
radial symmetry of the kernel

exo(r,[n]) =4/d°us— e h S(r, r +u)

||xc

=$le"udu [Isinadgdgh,e>(r, r - u)

spherical average h KS(I’ U)

=1[e"uduh/S(r, u)
SUMMARY Correlation energy per partlcle of any kind (true, exact DFT, LDA)

Is completely specified by a single global characteristic of the respective XC hole

obtained in two steps
(1) by the spherical average 30

(2) as the first moment of the resulting radial function



Exact and LDA XC hole in neon atom compared

30 T T T L T T T
) n,(r7 . n(7.7°)
w Ne g~ 04 Ne EXACT
z:I: 20| EXACT ~50 |~ =008 -
i
(&)
=z
3
O 1.0} ~2 | ~
X NUCLEUS N _ o e N T
-~ o _~NUCLEUS
ELECTRON =\ P + ELECTRON
= ¥ =1 i
-1.0 =05 (r-e")a, 0.0 0.5 -0.2 =0.1 (r*-rl/a, O 0.1
11 T 1 1
Ne -~ -
0.15 F /’ e 3 (e .
w \ Ne L Sl (g’
< \ £ =04 EXACT
by \Lba “° /2
Z 0.10 [“ \ —41.0 -
-
< T
S EXAC \\ L0090
b \ ° :
I 0.05 \ -0.5} -~
n' .
w
N
A
N LDA
1 ~a 1 i Nl —
0.0 0.5 1.0 0.0 0.1 0.2 0.3 0.4
r”la r/ag

FIGURE 2 Comparison of the exact exchange hole (solid lines) with exchange
hole in LDA (dashed linc) for Ne. The arrow marks the nuclear position. The
actual cxcha‘ngc hole. on a line through the nucicus and through the position of
the electron, is given in the upper p.:m.ls while the spherical averages are shown
in the lower panels. The left (resp.. right) panels correspond to the electron position
at 0.4 a.u. (resp.. 0.U9 a.u.) from the nucleus. Note that the spherical average is
reasonable in LDA in spite of poor rcprcecnmmn of the actual exchange hole.
(After Gunnarsson. Jonson and Lundqvist. Ref. 16. with permission.)
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Exact and LDA XC hole in silicon crystal compared
[110] plane in Si structure

a : . _

/lNTEHSTITIAN ANTI-BOND BOND CENTER|
INTERSTITIA |

0.15

bond <
zigzags ~

SC-WDA

density contours of valence electrons

AV
S 1!?'

+

\\l ] Z 3 FIGURE 4 Contour plots in the (110) plane of silicon of the XC hole in the LDA|

<
(@ (upper panels) and in the semiconducting weighted density approximation (SC- |
W\ . WDA. lower pancls). The XC holes are shown for three positions of the electron

(denoted by crosses), Full circles denote atomic positions. with straight lines de-
noting the bonding chains. Note thap the LDA is excellent in the bonding region ;
, \ but becomes increasingly worse in lower density regions. (After Hybertsen and |
Louie. Ref. 28, with permission.)
N

e—e Si nuclei and bond connecting lines

+ centers of XC holes in the main plot 32



Why is LDA so good Il

A mystic circumstance

It turns out that the errors in the exchange energy and the correlation energy,
individually quite significant,

tend to mutually compensate

Explanations have been forwarded

33



LDA and beyond

Ways to go beyond LDA — present choice in green
(something entirely else: GW, QMC, DMFT
Several forks < a non-system correction to LDA: LDA+U, LDA+DMFT

| something within DFT

-

relativistic
_ with elmg fields
extensions-

Within DFT < time dependent
finite temperatures

| iImprovements within non-relativistic DFT

34



LDA and beyond
Ways to go beyond LDA — present choice in green
(something entirely else: GW, QMC, DMFT
Several forks < a non-system correction to LDA: LDA+U, LDA+DMFT
| something within DFT

-

relativistic
_ with elmg fields
extensions-

Within DFT < time dependent
finite temperatures

| iImprovements within non-relativistic DFT

1
n
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LDA and beyond
Ways to go beyond LDA — present choice in green
(something entirely else: GW, QMC, DMFT
Several forks < a non-system correction to LDA: LDA+U, LDA+DMFT
| something within DFT

-

relativistic
_ with elmg fields
extensions-

Within DFT < time dependent
finite temperatures

| iImprovements within non-relativistic DFT

A

towards realistic

1 solids & molecules
n

36 agvn|



Improving LDA within DFT

Classification according to John Perdew

Improving LDA -- Jacob' s ladder

orbital functionals

hyper-GGA

meta-GGA

GGA

L(S)DA

This is an oversimplified scheme of the vast list of approximations to DFT.
Try to look at
http://sites.google.com/site/markcasida/dft

37



Improving LDA within DFT

Classification according to John Perdew

Improving LDA -- Jacob' s ladder

orbital functionals

hyper-GGA

meta-GGA

GGA

L(S)DA

SI corrections; Third generation DFT
hybrid functionals between DFT and HF
Greek pueta — means 'beyond' or ‘after' here
Generalized gradient approximation

Local (spin)density approximation

This is an oversimplified scheme of the vast list of approximations to DFT.

Try to look at

http://sites.google.com/site/markcasida/dft

38



Improving LDA within DFT

Classification according to John Perdew

Improving LDA -- Jacob' s ladder

In reality chemically accurate

orbital functionals
hyper-GGA
meta-GGA
GGA
L(S)DA

- o
< N i < -

el Wiy

k]

| vidél ve snach, a aj, zebrik stal na zemi, jehozto vrch dosahal nebe; a aj, andélé Bozi
vstupovali a sstupovali po ném.

And he dreamed, and behold a ladder set up on the earth, and the top of it reached to
heaven: and behold the angels of God ascending and descending on it.

Genesis 28:12



Improving LDA within DFT

Classification according to John Perdew

Improving LDA -- Jacob' s ladder

orbital functionals

hyper-GGA

meta-GGA

GGA

L(S)DA

40

exchange partly non-local
A local XC

~ Eye =1d°rn(r)e . (r)

TWO RIVALS

semi-empiriqal
parametrization

guided by general
requirements: sum rule, ...

orthodox DFT
no parameters




Improving LDA within DFT

Classification according to John Perdew

Improving LDA -- Jacob' s ladder

local kinetic energy

orbital functionals
hyper-GGA hybrid functionals -- admixture of ngn-local HF
meta-GGA Exc(N=¢(n_,Vn_,An_,z_) 7, =2V, |°
GGA Exc(r)=¢(n,,Vn_)
L(S)DA Exc (N =¢(n), &y (r)=¢(ny,n))

41



Improving LDA within DFT

Classification according to John Perdew

Improving LDA -- Jacob' s ladder

local kinetic energy

orbital functionals

hyper-GGA hybrid functionals -- admixture of ngn-local HF

meta-GGA | &y (N =@(n_,Vn_An_,z.) 7. => |V, |?

GGA Exc (r)=¢(n,,Vn, )

L(S)DA exd (N =¢(n), & (r)=¢(n,,n,)

all-important extension DFT — SDFT
generalized HK theorem: in spin-polarized systems

n,,n 0 [|¥)

Approximations: LDA — LSDA similar to HF — unrestricted HF

42
Needed for: e magnetic field e magnetic order e odd electron number




Improving LDA within DFT

Classification according to John Perdew

Improving LDA -- Jacob' s ladder

local kinetic energy

orbital functionals

hyper-GGA example B3LYP — see below

meta-GGA Exc (r) — ¢(no" VnO-1AnO-’TO-) T = Z | VW(ZO‘ |2

GGA £xc (N =¢(n,, V)
LODA | &0 =4(n), & (r)=(n,.n,)
EXYT =€ P ra (B - EPM) +a (ESN - £ + a (B8 - £

a,,a,,a, ...empirical parameters
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Epillogue

At surfaces, LDA works all too well,

considering the fast drop of the electron
density from the bulk value to zero

In the next class, we will have a look at
truncated jellium.



The end
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