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This class … 

•    explores  the general properties and important 
features of the electronic structure of solid surfaces 
•   using the simplest possible semi-realistic models, 
mostly 1-dimensional and  tractable analytically 
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•  basic quantity 
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…. a universal simple method: instead of SR for N(e)=2, 92, …,1028 electrons … 
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•    atomic around each site 
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PSEUDOPOTENTIAL 
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Atoms: 
•  valence states 
•  core  states 
Valence states: 
• extended 
• shallow                        ⇒ 
• participate in bonding, transport … 
• sensitive to environment 
• oscillate in order to 
           be orthogonal to core states 
           gain enough kinetic energy 
Core states: 
• compact 
• deep 
• typically inert to valence processes 
PSEUDOPOTENTIAL  IDEA 
Get rid of 
• strong potential in the core region 
• core states 
• unwieldy oscillations of valence states  

Na  atom 

1s

3s

2s

core  
levels 
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PSEUDOPOTENTIAL  IDEA 
Get rid of 
• strong potential in the core region 
• core states 
• unwieldy oscillations of valence states 
 

Today, the (norm-conserving) pseudo-
potential is defined by 
• a selected radius 
• conditions 
1.  the valence energy preserved 
2. the valence pseudo-state coincides 

with the true state outside the radius 
3. is smooth and node-less inside  
4. The norm of the pseudo-state is 

equal the norm of the true state 
  

Na  pseudoatom 

3s
cr
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MODEL I.  1D Sommerfeld with abrupt barrier 1 

 II.  I. x→

V
FE

Φ0E <

RATIONALE 
•  Sommerfeld in the bulk 
successful: transport, … 
•  pseudopotential argument 
•  experiment: soft X ray spectr. 
  …   all for simple metals 
   reasonable physical justification 
•  abrupt barrier - simplest 
confinement, single parameter 
•  exact form of the barrier not 
critical  
   just an expedient, makes 
  calculations doable by hand 

Fermi sea FE VΦ+ =

relevant data . . . see next slide: 
Take them over from realistic 

values for simple metals 
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MODEL I.  1D Sommerfeld with abrupt barrier 2 
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Intermezzo: comments on the density of states 

IDOS DOS

2 1

( ) ( ) ( general definition

basic form

DOS IDOS

)

 Integrated DO

( ) ( ) ( ) ( )

( ) our

  de

 m

nsity 

ode

of states   S

l

E

k
k

d
dE

m
Eh

dE d g g E
dE

E E g E E E

g

hus

E

tota stavů  

L

η η

ϑ δ δ
−∞

≡ =

= = ∑ −

= ⋅ ⋅

∫
N

N

 IDOS and DOS for various D  For large samples surface plays 
     a minor role, in dimension D, 
 

 CHECK: Born-Karman periodic 
boundary conditions in the bulk: 

 
             

1 : 1 /D DL L L− =

1
2

1 1
2

, 1, 2 /

( ) 2

( ) 2 2 2
                                             as before

ikx ikL
k e e k s L

s E mE L

E mE L mE L
π

π π

ψ π± ±= = =

= ⋅

= × ⋅ = ⋅N



 

( ) ( )

2

/2 /2 1

32

2 3

4
3

2

2,

1 2 3
2

( ) / 2

2

D D
D D D D

D

D

m
h

DE C E g E C E

D

C

g E E E

h

π

Γ

γ γπγ

γ πγ πγ

γ

π

−= =

=

= 



LD

2 2

2

2

2

OS
SUM RULE I.

LDOS   local density of st

without Local particle density

( ) ( )( ) ( )

( )( ) ( ) ( , )

( )( , ) ( )

( )(

s

ates

, )

p

1

in

F F

k kk F k
k k

E E

k k
k

k k
k

k
k

x xn x n E E

xn x d E d g x

xg x E E E

xdx g x E dx

ψ ψ ϑ

ψ ηδ η η η

ψ δ

ψ

−∞ −∞

= ∑ = ∑ −

= ∑ − ≡

= ∑ −

∫ = ∑ ∫

∫ ∫

 

2

SUM RULE II.( ) ( )

  LDOS in 3D defined in the s

  complete quantum nu

ame way

( )( , ) ( ), mbers

NOTE:

kE E g E

g E E Eζ ζ
ζ

δ

ψ δ ζ

− =

= ∑ −rr



MODEL I.  1D Sommerfeld with abrupt barrier 7 



MODEL I.  1D Sommerfeld with abrupt barrier 8 

LD

2 2

2

2

2

OS
SUM RULE I.

LDOS   local density of st

without Local particle density

( ) ( )( ) ( )

( )( ) ( ) ( , )

( )( , ) ( )

( )(

s

ates

, )

p

1

in

F F

k kk F k
k k

E E

k k
k

k k
k

k
k

x xn x n E E

xn x d E d g x

xg x E E E

xdx g x E dx

ψ ψ ϑ

ψ ηδ η η η

ψ δ

ψ

−∞ −∞

= ∑ = ∑ −

= ∑ − ≡

= ∑ −

∫ = ∑ ∫

∫ ∫

 

2 2
( ) ( )

SUM RULE II.

2

( ) ( )

LDOS f or our model
( ) ( )( , ) ( ) ( )

( , )

k

k E k Ek
k

E E g E

x xg x E E E g E

g x E L

δ

ψ ψδ

− =

= ∑ − =

=



2 2 1cos ( ) m
Ehkx L∆+ ⋅ ⋅ 2

0

22 1cos ( arcsin )

                                                   

m kx k
k kπ= + ⋅



see next slide



9 

LDOS FOR 1D SOMMERFELD MODEL 
WITH INFINITE BARRIER 

 
LDOS computed as a function of energy for  
 
 
for some arbitrary “lattice constant” from 
 
 
 
 
 
Note the increasingly rapid oscillations. 
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SURFACES   … by matching 
 
In the bands: similar to Sommerfeld, 
but  slightly more complicated 
 
In the gap:  new feature -- 
possibility of a surface state 
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TOWARDS THE SURFACE STATES 
Matching:  
 
 
 
 
Many factors intervene: 
• the cutoff position decisive 
• the barrier height also important 
• even if the potential is real, it may 
  be positive or negative  
 
In general, the surface states, their 
occurrence  
and properties are very sensitive to 
details 
of the surface condition. 
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SURFACE STATES ARE LOCALIZED NEAR 
THE SURFACE 

BAND STATES EXTEND THRU THE 
WHOLE CRYSTAL 
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Position of the surface state in the gap as a function of 
the termination variable d   for several heights of the 
barrier  
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Complex band structure of silicon 

22 

A realistic complex band structure shows: 
• similarity with the 1D model - imaginary 
loops at high symmetry points 
• effects of degeneracy 
• additional complex branches at other 
extrema 
 

A detailed description is given below in Czech  



Complex band structure of silicon 

1 

A realistic complex band structure shows: 
• similarity with the 1D model - imaginary 
loops at high symmetry points 
• effects of degeneracy 
• additional complex branches at other 
extrema 
 

English translation 
Fig. 2. Complex band structure of silicon at 
the center of the surface Brillouin zone of 
the (001) surface [13]. Full lines repre-  
sent the classical real band structure along 
the                                                    . Dotted 
lines indicate the complex band structure. 
The lines to the left give real energies at  
purely imaginary             . Two such loops 
bridge over the forbidden band between the 
top of the valence band        and the local 
extrema of the conduction band             . 
From the    conduction band minimum a 
complex line  comes out; 
     is seen directly,     is given by numbers.   

r i axis ( (0, / ), 0)z zX k a kΓ π∈ =

iiz zk k=

25Γ ′

15 2,Γ Γ ′

1∆

rzk izk



Last time 
Plane wave vs. atomic orbital expansion 

2 



Last time 
Plane wave vs. atomic orbital expansion 

3 

 Equivalent description 
                 LCAO  →  realistic picture  ←  NFE 
 
 LCAO provides a simple link to chemical bond & atomic properties 
                 Shockley theory of surface states in semi-conductors  (1939) 
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