Electronic structure and magnetism in UPtAl

A. V. Andreev
Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8, The Czech Republic

M. Diviš, P. Javorský, K. Prokeš, and V. Sechovsky
Department of Electron Structures, Charles University, Ke Karlovu 5, 121 16 Prague 2, The Czech Republic

J. Kuneš
Institute of Physics ASCR, Cukrovarnická 10, 160 00 Prague 6, The Czech Republic

Y. Shiokawa
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
(Received 2 March 2001; published 17 September 2001)

Relation between electronic structure and magnetism in UPtAl was studied by ab initio band structure calculations in conjunction with several experiments on single crystals focused on magnetic moments (magnetization and neutron-diffraction measurements), magnetic entropy, and anomalous magnetic moment contributions to specific heat and electrical resistivity. The neutron diffraction experiment confirmed the ferromagnetic ordering of U magnetic moments below T_C = 43 K. The reduced magnetic entropy with respect to the value $R \ln 2$, as derived from specific-heat data, points to a delocalized character of the 5f electrons of uranium bearing magnetic moment in this compound. The magnetocrystalline anisotropy in UPtAl is very strong with the anisotropy energy larger than 130 K. In this view, the energies of a gap in magnetic excitation spectrum derived from specific-heat and electrical-resistivity data are unexpectedly low (around 50 K). The electronic structure of UPtAl was calculated in the framework of the local spin density approximation to the density functional theory. The results confirm the large exchange splitting of the uranium 5f states which is of the same size as the spin-orbit splitting. The resulting self-consistent charge density is used to discuss the bonding mechanism in UPtAl. Rather large values of the uranium spin $M_{5}(U)$ = 1.63 μ_B and orbital $M_{4}(U)$ = −2.06 μ_B magnetic moment were calculated and compared with the results of previous calculations of Gasche et al. Comparison of the total calculated U moment with the values derived both from bulk magnetization measurements and neutron diffraction experiments is discussed as well.

DOI: 10.1103/PhysRevB.64.144408

PACS number(s): 75.30.Cr, 71.20.Lp, 75.30.Gw, 75.40.Cx

I. INTRODUCTION

UPtAl belongs to the ternary UTX compounds (T is a late d-transition element, X is a p element) with the hexagonal ZrNiAl-type crystal structure (the $P6_2/m$ space group). The U ground-state magnetic moment in compounds of this group varies from 0 to 1.6 μ_B depending on the degree of itinerancy of uranium 5f electrons. That is determined by the overlap of 5f wave functions centered on neighboring U atoms and by the hybridization of 5f states with valence electron states of ligands.1 The latter mechanism usually called the 5f-ligand hybridization has been introduced and discussed in various aspects by Koelling et al.2 The 5f-ligand hybridization causes that the T and X atoms affect magnetic properties considerably by influencing the 5f-electron states although they do not contribute much to the magnetic moment itself. All the compounds of the group, irrespective of the ground state that can be ferromagnetic (the typical representative is URhAl),3,4 antiferromagnetic (UNiAl,5 UNiGa1) or paramagnetic (UCoAl)6 exhibit a huge uniaxial magnetic anisotropy.

Magnetization measurements revealed that UPtAl orders ferromagnetically below T_C = 43 K with a saturated magnetization of 1.38 μ_B per formula unit at 2 K.8,9 The strong uniaxial anisotropy is well demonstrated in Fig. 1 that shows the magnetization curves measured at 4.2 K in magnetic fields applied along the a and c axis. One can see that the c axis is the easy-magnetization direction. In high fields, the magnetic moment is almost saturated at 40 T at a value of 1.49 μ_B. The magnetization measured along the a-axis is much smaller without any spontaneous component (in fact, it resembles a magnetic response of a paramagnet exhibiting 0.28 μ_B/f.u. at 40 T). The crossing point of linearly extrapolated magnetization curves to very high-fields provides a lowest estimated value of the anisotropy field B_a = \approx 290 T. The corresponding energy of magnetocrystalline anisotropy E_a amounts 130 K in the $k_B T_a$ representation. Another estimate of anisotropy energy can be derived from the difference between values of the paramagnetic Curie temperature $T_{p,c}$, for the c and a axis. For UPtAl this difference $\Delta T_{p,c} = 420$ K (Ref. 8) even exceeds the value of the anisotropy energy determined from magnetization measurements in the ordered state.

The shape of virgin magnetization curve in fields applied along the c axis (see inset in Fig. 1) has been preliminary attributed to the coercivity of narrow domain walls in ferromagnetic UPtAl.5 Nevertheless, the strong similarity to the virgin magnetization curve of UNiGa, which is an antiferromagnet1 and shows a sharp metamagnetic transition
in low fields, may raise some doubts on ferromagnetism in UPtAl. Therefore a neutron-diffraction experiment is strongly desirable to confirm the type of magnetic ground state in this compound.

In this paper we study relation between the electronic structure and magnetism of UPtAl using ab initio band structure calculations in conjunction with experiments focused on magnetic moments, magnetic entropy, and anomalous contributions of the system of magnetic moments to specific heat and electrical resistivity. To observe intrinsic properties of this strongly anisotropic ferromagnet all the experiments were performed exclusively on single crystals.

II. EXPERIMENT

Single crystalline samples used for experiments were cut from the main crystal by spark-erosion. The crystal was pulled by a modified Czochralski method in a tetra-arc furnace. The details of the crystal growth are described by Andreev et al.8

The neutron-diffraction study was performed at the double-axis diffractometer E4 installed at the Berlin Neutron Scattering Center (BENSC) of the Hahn-Meitner-Institute. The crystal was glued onto an aluminum tip with its hexagonal axis parallel to the rotational axis of the diffractometer and inserted into a standard Orange-type cryostat (manufactured by ILL). It was oriented using several sufficiently strong and well centered nuclear reflections and the cell parameters were refined from the UB matrix. The incident neutron wavelength was 2.43 Å.

We have collected two identical sets of integrated intensities, at 2 K and at 65 K. The latter temperature is well above the Curie temperature \(T_C = 43\) K. In addition, we have followed the temperature dependence of the integrated intensity of two reflections in order to confirm the magnetic ordering temperature. The measured \(\alpha\) scans were analyzed by the Lehman-Larson algorithm.10 The crystallographic and magnetic structures were determined by fitting procedures using the program FULLPROF.11

Magnetization data were obtained in a SQUID magnetometer (Quantum Design) in fields up to 5 T applied along the \(c\) axis.

The specific heat was measured by the relaxation method on a 30-mg crystal in the temperature range 2–100 K using the PPMS-14 system (Quantum Design).

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Neutron diffraction

By refinement of the 65 K data set, we have verified that UPtAl crystallizes in the proper ZrNiAl-type of structure \((P6_2/m\) space group) with lattice parameters \(a = 701.4\) pm and \(c = 412.5\) pm that are in satisfactory agreement with the x-ray diffraction data.8 This crystal structure of UPtAl is built up by alternating two types of basal-plane atomic layers along the \(c\) axis (Fig. 2). One of them contains all of the U atoms and 1/3 of the Pt atoms (the Pt1 position). The other one consists of the rest of the Pt atoms (the Pt2 position) together with all of the Al atoms. Each U has four nearest U neighbors within the basal plane and two other neighbors along the \(c\) axis. The bonding of the U 5f orbitals within the
basal plane together with the strong spin-orbit coupling yields a strong uniaxial magnetocrystalline anisotropy with the easy-magnetization direction along the c axis. The refined structural and magnetic parameters are given in Table I.

At temperatures below T_C, an additional scattering intensity is observed on the top of majority of the Bragg nuclear reflections. Although an effort has been made to detect additional, purely magnetic, reflections by means of typical reciprocal-space scans, no one has been found. This result corroborates the interpretation in terms of ferromagnetic ground state in UPtAl. Temperature dependence of the integrated intensity of the $\bar{1}00$ reflection, which shows the highest ratio between the magnetic and nuclear intensity, is presented in Fig. 3. The comparison of magnetic intensity with the temperature dependence of the square of spontaneous magnetization in the inset of this figure demonstrates a reasonable agreement between the macroscopic and microscopic magnetic data.

The strong magnetocrystalline anisotropy observed for UPtAl suggests to use Ising model with effective spin $S_{\text{eff}} = 1/2$ for the interpretation of our data. We have therefore calculated the temperature dependence of the magnetization using the mean field solution of the Ising model (see Fig. 3, inset). From a comparison of the calculated and experimental data it is clear that such simple mean field solution provides rather poor description of the $M(T)$ data. This suggests that the magnetic excitations, which are driven by the interplay of exchange interactions with the magnetocrystalline anisotropy, can have a quite complex character in UPtAl. This statement is further corroborated by our analysis of specific-heat and resistivity data, and by band structure calculations (see below).

The magnetic structure in UPtAl has been refined from the difference ($2-65$ K) integrated intensities with a help of the scaling factor inferred from the 65 K data set. When supposing the U$^{3+}$ magnetic form factor, the best agreement has been obtained for a simple collinear ferromagnetic structure of equal U moments of $1.31 \pm 0.08 \mu_B$ oriented along the c axis that is in agreement with magnetization data. We have also performed the same type of refinement supposing the U$^{4+}$ magnetic form factor. The refined U moment was by about 5% smaller than in the former case while the quality of fits was not changed. This is due to the fact that the magnetic form factors of U$^{3+}$ and U$^{4+}$ are very similar. Clearly, we are not able on the basis of our data to discriminate between the two U valence states.

B. Specific heat

The specific heat data, presented in Fig. 4, show a pronounced anomaly at the ordering temperature $T_C = 43$ K. To

![Figure 3](image-url)
analyze these data quantitatively, one has first to estimate the nonmagnetic contribution. It consists of the electronic and phonon parts, C_el, and C_ph, respectively. The electronic specific heat is expressed by a simple linear temperature dependence

$$C_\text{el} = \gamma T.$$

For the phonon part, we have assumed the following approximation: the total phonon spectrum consists of 3 acoustic branches, which we describe by the Debye model and characterized by one Debye temperature θ_D, and 6 optical branches, described by the Einstein model and characterized by two different Einstein temperatures θ_E, each describing 3 branches. The phonon contribution can be then calculated by

$$C_\text{ph} = N_A k_B \left[\sum_j x_j^2 \exp(x) / [\exp(x) - 1]^2 \right. + \left. 9 \frac{T^3}{\theta_D^3} \int_0^1 x^4 \exp(x) / [\exp(x) - 1]^2 dx, \right]$$

where $x_j = \theta_E / T$, N_A is the Avogadro number, and k_B is the Boltzmann constant.

Assuming the magnetic specific heat to be negligible at sufficiently low temperatures $T \ll T_C$, the value of the γ coefficient of C_el, $\gamma = 65 \text{ mJ mol}^{-1} \text{ K}^{-2}$, is determined from the low-temperature part of the C_p/T vs T^2 plot (see inset in Fig. 4). The value of θ_D can be then determined by the slope of the C_p/T vs T^2 linear dependence (at $T \ll \theta_D$). Considering three phonon branches described by the Debye model (in the Einstein model, the specific heat is negligible in this temperature range), we obtain $\theta_D = 160 \text{ K}$. Assuming further $C_\text{mag} \approx 0$ at $T > T_C$, the measured data above T_C are well described by $\theta_{E1} = 145 \text{ K}$ and $\theta_{E2} = 460 \text{ K}$. The corresponding calculated specific heat is represented in Fig. 4.

A simple model of the phonon spectrum with all 9 phonon branches described by a single value of $\theta_D = 240 \text{ K}$ within the Debye model has been successfully applied to describe the thermal-expansion data. The value of 240 K is also well comparable with our value of θ_D [in 240 K describing 9 branches corresponds to $\theta_D = (240/3)^{1/3} \text{ K} = 166 \text{ K}$ for 3 branches]. In Fig. 4 one can see, however, that this simple model fails to describe the C_p data at temperatures above $\approx 50 \text{ K}$ and a more complex approximation described above shall be thus used.

The magnetic specific heat, derived from the raw data for the γ and θ values given above, is represented in Fig. 5. It yields a magnetic entropy of $S_\text{mag} = 4.1 \text{ J mol}^{-1} \text{ K}^{-1}$ at 0.71 R ln 2. Although we are aware that the determined value of S_mag critically depends on the estimation of C_el, and C_ph, we can conclude that S_mag does not reach the value of $R \text{ln 2}$. The value of $S_\text{mag} = R \text{ln 2}$ would be obtained, e.g., for $\gamma = 40 \text{ mJ mol}^{-1} \text{ K}^{-2}$ (analysis of C_p above T_C then gives $\theta_D = 160 \text{ K}$, $\theta_{E1} = 149 \text{ K}$, $\theta_{E2} = 380 \text{ K}$) that seems to be unrealistic (compare to the inset in Fig. 4). Therefore our estimate of S_mag provides a strong argument for the delocalized $U 5f$ states in UPtAl. We note that the strong magneto-crystalline anisotropy of UPtAl should also play some role for the magnetic entropy. Note that the value of magnetic entropy determined above is definitely lower than the value $5/3 \text{ln 2}$ that has been derived for isotropic itinerant system.

We made an attempt to fit the low-temperature part of C_mag first by a commonly used formula describing ferromagnetic spin fluctuations:

$$C_\text{mag} = a T^3 \ln T,$$

where a is a fitting parameter. As can be seen in Fig. 6, we did not obtain a good agreement with the experimental data in this way. On the other hand, we have found that its low-temperature part fits very well to the formula

$$C_\text{mag} = a T^{3/2} \exp \left(-\frac{\Delta}{T} \right),$$

FIG. 4. Temperature dependence of the specific heat of UPtAl. The lines show electronic and phonon contributions as well as their sum. The dotted line represents the nonmagnetic specific heat ($C_\text{el} + C_\text{ph}$) when describing all phonon branches by the Debye model ($\theta_D = 240 \text{ K}$).

FIG. 5. Temperature dependence of the specific heat of UPtAl. The inset shows temperature dependence of the magnetic specific heat supposing different gamma values (see text).
FIG. 7. Temperature dependence of electrical resistivity. The dotted curve shows the fit according to formula (5) with $a = 0.047 \ \mu\Omega \cdot \text{cm}^2$ and $\rho_0 = 59.5 \ \mu\Omega \cdot \text{cm}$; the dashed curve is the fit of data points up to 39 K according to formula (6) with $a = 0.039 \ \mu\Omega \cdot \text{cm}^2$, $b = 0.34 \ \mu\Omega \cdot \text{cm}^{-1}$, $\rho_0 = 59.6 \ \mu\Omega \cdot \text{cm}$, and $\Delta = 27.3 \ \text{K}$.

which describes the specific heat of magnons with an energy gap Δ in their dispersion relation.\footnote{16} Assuming $\gamma = 65,000 \ \text{mJ mol}^{-1} \ \text{K}^{-2}$, the fit of experimental data up to 30 K gives the values of $a = 3.6 \ \text{J mol}^{-1} \ \text{K}^{-5/2}$ and $\Delta = 55 \ \text{K}$ (see Fig. 6). The energy gap Δ derived in this way is, however, rather small in view of the huge magnetic anisotropy of this material.

In this context it is worth to reanalyze data of the electrical resistivity presented by Andreev \textit{et al.}\footnote{14} The low-temperature part of the $\rho(T)$ curve can be well fitted with the simple quadratic law:

$$\rho = \rho_0 + aT^2,$$

with $a = 0.047 \ \mu\Omega \cdot \text{cm}^2$ and $\rho_0 = 59.5 \ \mu\Omega \cdot \text{cm}$. A need of an additional term at higher temperatures is clearly seen in Fig. 7. The contribution of scattering of electrons on magnon-like excitations can be derived from the mentioned simple model.\footnote{16} It leads to the expression

$$\rho = \rho_0 + aT^2 + bT(1 + 2T/\Delta)\exp\left(-\frac{\Delta}{T}\right),$$

the last term accounting for electron scattering on magnetic excitations with a gap Δ. Such term has been identified, e.g., for UNiGe, where $\Delta \approx 40 \text{ K}$,\footnote{17} similar to the value obtained from specific-heat data. The value of Δ is strongly dependent on the temperature range fitted. Data up to 20 K can be fitted by Eq. (6) for $a = 0.044 \ \mu\Omega \cdot \text{cm}^2$, $b = 1.45 \ \mu\Omega \cdot \text{cm}^{-1}$, $\rho_0 = 59.6 \ \mu\Omega \cdot \text{cm}$, and $\Delta = 61.4 \ \text{K}$, whereas data up to 39 K lead to $a = 0.039 \ \mu\Omega \cdot \text{cm}^2$, $b = 0.34 \ \mu\Omega \cdot \text{cm}^{-1}$, $\rho_0 = 59.6 \ \mu\Omega \cdot \text{cm}$ and $\Delta = 27.3 \ \text{K}$. These values certainly compare with the Δ value derived from the specific-heat results. In both cases, however, the value of Δ is too low in comparison with the energy of magneto-crystalline anisotropy estimated from the magnetization and susceptibility data.

This disagreement may be connected with the fact that both the specific heat and resistivity are properties arising from integration over the whole (or at least a large segment) of the Fermi surface.

FIG. 7. The contribution of scattering of electrons on

FIG. 6. Fitting curves of the low-temperature magnetic-specific-heat data for UPtAl.

IV. BAND-STRUCTURE CALCULATIONS

To obtain direct information about the ground-state electronic structure and related properties we also applied first principles theoretical methods. The ground-state electronic structure was calculated on the basis of the density functional theory (DFT) within the local spin density approximation (LSDA).\footnote{18} For this purpose we used the full potential linearized augmented plane wave method (LAPW) as implemented in the latest version of the \textsc{wien97} code.\footnote{19} The spin-orbit coupling is treated by the second variational step within this implementation. The calculations were performed with the following parameters. The nonoverlapping atomic sphere radii of 148, 132, and 127 pm were taken for U, Pt, and Al, respectively. The basis for expansion of the valence states (less than 6 Ry below Fermi energy) consisted of more than 1000 basis functions (more than 100 APW/atom) plus the U ($6s, 6p$), Pt ($5p$), and Al ($2p$) local orbitals. The uranium $5f$ states were also treated as the valence Bloch states and thus uranium is characterized by a noninteger occupation number. The Brillouin-zone integrations were performed with the tetrahedron method\footnote{19} on a 35–105 special k-points mesh. In order to identify the contributions of individual bands to the orbital moment, within the computer code \textsc{averx} we developed a new subroutine for calculating the energy decomposition of the orbital moment.

The total density of electronic states (DOS) and site projected DOS from scalar relativistic non-spin-polarized calculations are shown in Fig. 8. The lowest band that is about -8 to -6 eV originates from the Al $3s$ states. The Pt $5d$ states form the main contribution in the energy range -6 to -4 eV (“$5d$ band”) but they show an admixture of the
The important results concerning the uranium-f and platinum-d bonding in UpTAl are contained in Table II, which shows the charge distribution over the atomic spheres and its orbital decomposition. Although the Pt 5d bands are filled with the Fermi energy lying in the region of U 5f bands, the Pt-5d and U-5f occupation numbers are 7.535 (Pt$_1$), 7.547 (Pt$_2$), and 2.461 (U), respectively. This is a consequence of the hybridization between the Pt-5d and U-5f states. The region of the rather low DOS (-3 eV$<E<0.5$ eV) between the U 5f and Pd 5d derived bands is determined mainly by the energy difference between the corresponding atomic levels and the strength of the U 5f-Pt 5d hybridization. When we compare the converged ground-state density with that of the simple superposition of neutral atomic charge densities, which is the initial charge density in the Kohn-Sham equations, we find a small charge transfer from the uranium and aluminum to the both platinum sites. Moreover from our band calculations it is now strongly suggested that uranium valency 3+ or 4+ cannot have reasonable meaning in the case of UpTAl. This fact corresponds with results of our analysis of neutron diffraction data, which shows that the assumed valency 3+ or 4+ has only a negligible effect on the refined value of total uranium magnetic moment.

The spin-polarized scalar relativistic LSDA calculations [see Figs. 9(a) and 9(b)], performed to make the closest comparison with Gasche et al., provide the spin magnetic moments of M_S(U) = 1.84 μ_B, M_S(Pt$_1$) = -0.03 μ_B, M_S(Pt$_2$) = -0.05 μ_B, M_S(Al) = -0.01 μ_B, and M_S(interstitial) = 0.25 μ_B in the interstitial region of the UpTAl crystal. The total spin magnetic moment M_S = 2.00 μ_B is more than 50% higher than the LMTO-ASA value of 1.31 μ_B. Such a discrepancy between the two DFT calculations suggests an importance of the general-potential band-structure treatment of the magnetic properties in UpTAl.

Next we investigated the effect of the spin-orbit coupling (SOC). The most prominent effect of SOC is found for the U 5f states, where the splitting according to the total angular momentum is clearly developed [see Fig. 9(c)]. An almost 0.5 eV increase of the bandwidth due to SOC is obtained also for Pt 5d states. Finally, we performed spin-polarized LSDA calculations including SOC. The combined effect of the spin-polarization and SOC influences both occupied and unoccupied DOS from -1.5 eV up to 2.5 eV [see Fig. 9(d)]. Therefore a significant relation between magnetic and bulk

![FIG. 8. Calculated scalar relativistic total (a) and site projected nonmagnetic DOS curves (b), (c), and (d) in states per hexagonal unit cell of UpTAl. The Fermi energy is set to zero energy.](144408-6)
properties can be expected. In Fig. 10, we show the DOS curves of the projected relativistic $j = 5/2$ and $j = 7/2$ states and the projection to the majority- and minority-spin states. It is visible that the occupied $j = 5/2$ states are dominated by majority spin states but there is some admixture of minority states. Our result again demonstrates the fact that the exchange interaction energy is comparable to the SOC. Therefore, we suggest that the rather low value of the energy gap $D \sim$ see Sec. III originates from averaging over the magnetic excitations, which reveal at the same time the large anisotropy and the pronounced dispersions over the various directions in the Brillouin zone.

The value of DOS at the Fermi level is $N(E_F) = 16$ states/ev which corresponds to $\gamma_{\text{band}} = 13$ mJ mol$^{-1}$ K$^{-2}$. Our experimental specific-heat value is $\gamma_{\text{exp}} = 65$ mJ mol$^{-1}$ K$^{-2}$, that points to an enhancement factor $\lambda = 4$; λ is defined by the expression $\gamma_{\text{exp}} = \gamma_{\text{band}}(1 + \lambda)$. This total enhancement is most likely due to electron-phonon coupling and moderate many-body enhancements. This argues for moderate correlations inside the narrow $5f$ bands of UPtAl compound. Including SOC and assuming a ferromagnetic arrangement of uranium magnetic moments aligned along c axis, as observed experimentally, the spin moments $M_S(U) = 1.63$ μ_B, $M_S(\text{Pt}_1) = -0.02$ μ_B, $M_S(\text{Pt}_2) = -0.03$ μ_B and the orbital moments $M_L(U) = -2.06$ μ_B, $M_L(\text{Pt}_1) = 0.01$ μ_B, $M_L(\text{Pt}_2) = -0.02$ μ_B, have been obtained. These our values are again rather different comparing to values calculated by LMTO-ASA method by Gasche et al. (see Ref. 4, table 4). We also apply our new modified code AVERX in order to calculate the orbital-magnetic-moment projected DOS. The orbital-magnetic-moment projected DOS originates from a relatively narrow energy region below the Fermi level comparing with the spin-up and spin-down DOS curves [see Figs. 9(a), 9(b), and inset of Fig. 9(d)]. The calculated total uranium moment $M_T(U) = 0.43$ μ_B can be compared with our neutron-diffraction value of 1.31 μ_B, which points to the importance of the orbital polarization effects, which was not included in our current band structure calculations. On the other hand, the recent x-ray magnetic circular dichroism study provides $M_L(U) = -2.36$ μ_B (Ref. 22) that is 15% larger than our value $M_L(U) = -2.06$ μ_B. This fact suggests the importance to perform polarized neutron diffraction on single crystal, which should enable one to resolve the spin and orbital part of uranium magnetization density directly.

V. CONCLUSIONS

In conclusion, we have studied main features of electronic structure and magnetism in UPtAl both experimentally and
by *ab initio* band structure calculations. The neutron diffraction experiment in accord with magnetization data confirmed the ferromagnetic ordering of U magnetic moments ($\sim 1.3 \mu_B$) below $T_C = 43$ K. The analysis of specific-heat data leads to a value of magnetic entropy that is reduced with respect to $R \ln 2$. This implies rather delocalized 5f electrons of uranium bearing the magnetic moment in this compound. Magnetic contributions both, to the specific heat and electrical resistivity can be well fitted with formulas containing exponential terms, which are frequently being associated with existence of a gap in magnetic excitation spectrum.\(^\text{16}\)

The derived values of gap energy are however strikingly small in the light of the strong magnetocrystalline anisotropy and the pronounced dispersions over the various magnetic excitations, which reveal at the same time the large anisotropy energy from magnetization data estimated to be larger than 130 K. Therefore, we propose that our small gap values originate from averaging over the magnetic excitations, which reveal at the same time the large anisotropy and the pronounced dispersions over the various directions in the Brillouin zone.

The results of *ab initio* density-functional calculations confirm the large exchange polarization of the uranium 5f states that competes with the spin-orbit splitting. The resulting self-consistent crystal-charge density was used to discuss the bonding mechanism in UPtAl (the anisotropy energy from magnetization data estimated to be larger than 130 K). The analysis of specific-heat values from magnetization and neutron-diffraction measurements ($\sim 1.3 \mu_B$), which points to the importance of the orbital polarization effects,\(^\text{21}\) that were not included in our current band structure calculations. On the other hand, the recent x-ray magnetic circular dichroism study provides $M_L(U) = -2.36 \mu_B$,\(^\text{22}\) which is 15% larger than our value $M_L(U) = -2.06 \mu_B$.

ACKNOWLEDGMENTS

The work is a part of the research program of the Joint Laboratory for Magnetic Studies of the Charles University and Academy of Sciences. Financially, it was supported by Grants No. 202/99/0184 of the Grant Agency of the Czech Republic, No. 145/2000 of the Grant Agency of the Charles University, and No. ME162 of the Ministry of Education of the Czech Republic. M.D. and J.K. thank P. Novák for fruitful discussions and help with the AVERX code.