Study of the Short-time Fast Relaxation of Induced Currents in High T_c Superconductors using Magnetic Hysteresis Loops

L. Püttö, M. Jirsa, J. Schneider and R. Wödenweber

aInstitute of Physics, Academy of Sciences of CR, Na Slovance 2, CZ-180 40 Praha 8, Czech Republic.

bInstitut für Schicht- und Ionentechnik, KFA Jülich, P.O.Box 1913, D-52428 Jülich, FRG.

Magnetic hysteresis loops measured with various field sweep rates (sometimes called the dynamic relaxation - DR) enables to extend the time scale of observable relaxation of induced magnetic moment \mathcal{M} to subsecond region even in high magnetic fields and to study fast relaxation processes in vortex system. Relaxation and DR data measured on YBa$_2$Cu$_3$O$_7$ thin film cover the range of relaxation times 10^{-2}-10^4 s corresponding to the range of relaxation rates dj_ϕ/dt over more than 6 orders of magnitude.

Relaxation of superconducting current j_ϕ and the directly related induced magnetic moment $\mathcal{M} = -\Omega j_\phi$, where Ω is a constant, is usually described in terms of time dependencies $\mathcal{M}(t)$ and/or $j_\phi(t)$ measured after a large preceding change of external magnetic field B_e (the conventional relaxation, CR) [1]. There are some drawbacks of this approach: (i) The available time window is usually limited at short times by the nonzero transition period from the fast field sweep to the regime of constant B_e [2]. For common power supplies it represents delay of several seconds. This transition time can be significantly shortened if the external field is ramped up [3], but vortex system is rather complicated in this case. (ii) The long time measurements are sometimes affected by temperature instability of the experimental set up. (iii) There is always a considerable uncertainty in the time scale origin.

Due to these limitations CR is not very suitable for direct study of the interesting range if initial fast relaxation processes in vortex systems. More straightforward physical approach to relaxation processes is based on the analysis of the relation between current $j_\phi(B_e,T)$ and the rate of current relaxation $(dj_\phi/dt)(B_e,T)$ [4]. Because dj_ϕ/dt is equivalent to the electric field E we can combine CR with transport measurements where $j(E)$ dependence is recorded directly. While CR covers range of low E, we measure much higher E by the transport measurements. The intermediate range of electric fields can be studied using transformed data from magnetic hysteresis loops recorded with various rates of field sweep dB_e/dt [5,6]. This method (called also the dynamic relaxation, DR) extends the range of relaxation rates by a few orders of magnitude in comparison to the CR. The $j_\phi(E)$ or dj_ϕ/dt data obtained from transport or DR experiments can be transformed finally into an equivalent time dependence and compared with the CR data.

In this paper we present new DR data $j_\phi(dB_e/dt)$ and describe the way the data are transformed into the time dependence $j_\phi(t)$. After the transformation the DR data cover a short time range, typically between 10^{-3} and 10 s. In the following we will use function $g(j_\phi)$ to depict the time derivative of the superconducting current $g(j_\phi) = |dj_\phi/dt|$ [5]. This simple differential equation can be integrated as

$$t_i(j_\phi) = t_r + \frac{\int_{j_\phi}^{j_\phi(t_r)} \frac{dj_\phi}{g(j_\phi)}}{j_\phi}$$

(1)

where $j_r = j_\phi(t_r)$. The integration constant t_r will be discussed later. This definition of the "integral" time t_i can be modified into form more suitable for practical calculations as g usually varies by several orders of magnitude

$$t_i(g) = t_r + \int_{\ln(g)}^{\ln(g_r)} S_{\text{diff}} d\ln(g').$$

(2)

where $S_{\text{diff}} = |dj_\phi/dt| \ln(g')$ and $g_r = g(j_r)$.

In the special case of the purely logarithmic relaxation of the Anderson-Kim type [7] $S_{\text{diff}} = \text{const}$, and we obtain

$$t_i(g) = S_{\text{diff}} / g + (t_r - S_{\text{diff}} / g_r).$$

(3)

Though we may use in general any value of t_r, only the special choice of the integration constant $t_r =$
$S_{\text{diff}/g}$ yields a simple relation between time t_i and
the relaxation rate $g = |dS_{\text{diff}}/dt|$ as $t_i = S_{\text{diff}}/g$ [6].
This choice of t_r naturally yields the simple dependence linear in $\ln t$ as $j_S(t) = j_{S1} - S \ln t$, where
j_{S1} and $S = dS_{\text{diff}}/dt$ are constants. Moreover, only
for such choice of t_r we have $S_{\text{diff}} = S$, which also
means that $t_i = t_d$, where t_d is defined as $t_d = S/g$.

DR data are very suitable for such analysis as constant sweep rate dR_e/dt during MHL recording implies constant relaxation rate [6]

$$g = \frac{dS_{\text{diff}}}{dt} = \frac{\chi_0}{\mu_0} \frac{dB_e}{dt},$$

which follows from the equation of motion of j_S

$$\frac{dj_S}{dt} = \frac{\chi_0}{\mu_0} \frac{dB_e}{dt} - \frac{\Delta v_B}{\Omega_{\mu_0}} P(j_S, T, B_e),$$

where χ_0 is the differential susceptibility, Δ is a
geometric factor and P is the vortex hopping
probability [2,5]. Internal field $B_i \approx B_e$.

Measurements of induced magnetic moment
were performed on the vibrating sample
magnetometer PAR 155 and the superconducting
current was evaluated according to the Bean model.
MHLs were recorded in B_e swept up to ± 2 T. Seven
sweep rates dB/dt ranging from 88 to 0.88 mT/s
were used, which correspond according to Eq. 4 to
seven values of the relaxation rate dS_{diff}/dt. In addition
we measured CR at constant B. Both data were first
expressed in terms of j_S and dS_{diff}/dt and then
transformed into the time dependent relaxation
using Eq. 2, see Fig. 1. We used the integration
constant t_r equal to S_{diff}/g, i.e. assuming such time
scale that $dS_{\text{diff}}/dt = dS_{\text{diff}}/\ln g$ at the point
with highest measured j_S. We see that the MHL data
cover the time scale down to $t = 30$ ms.

In conclusion, whereas the j_S versus (dS_{diff}/dt) or E
at a given T and B_e is an unambiguous function
[4,5], $j_S(t)$ (and in particular the $j_S(\ln t)$)
depends very much on the time scale. However, there is one
important consequence of Eq. 1. Assuming that we
know the $j_S(E)$ dependence up to very high currents
(e.g. from combined magnetic and transport j_S
measurements), we can attribute time t_i to each j_S
value in the all range of j_S using Eqs. 1 or 2. The
value of the integration constant t_r is the time
corresponding to the highest measured j_S by any
method, including MHL or a transport measure-
ment). Though the choice of t_r is in general
arbitrary, there is very advantageous to define time $t = 0$
to be the time of the vortex state with j_S equal
to the very high critical depinning current j_{CO}. In such
case t_r would be the time corresponding to (virtual)
conventional relaxation between j_{CO} and the highest
measured j_S value. Then all $j_S(t)$ dependencies
measured at a given T and B_e by different methods
overlap and we have unambiguous function $j_S(t)$.
Relaxation in vortex systems is usually close to the
logarithmic one and so we can use the value $t_r =$
$S_{\text{diff}}/g = (\mu_0/\gamma_0) (S_{\text{diff}}(dB/dt))$ deduced for purely
logarithmic relaxation. This approach was also used
for evaluation of data in Fig. 1.

We are grateful to very stimulating discussions with Prof.
R. Griessen. This work was supported by grant GACR.

(1994) 412.
(1964) 39