Jet production in virtual photon collisions at HERA and LEP

Jiří Chýla
Institute of Physics, Prague

1. Nature of the photon
2. Tools to investigate it
3. Equivalent Photon Approximation
4. Jets in danger: the associated soft activity
5. Structure of the real photon
6. Jets in virtual photon collisions
7. Comparison with NLO calculations
8. Is there a need for virtual photon structure?
9. Prospects for future
Nature of the photon

The photon is one of the fundamental gauge bosons of the Standard Model without selfcouplings and without intrinsic structure. However, at high energies photon–hadron interactions are dominated by quantum fluctuations of the photons into fermion–antifermion pairs and into vector mesons which have the same spin–parity as the photon. This is called photon structure. (S. Söldner–Rembold in LP97)

- what is meant under “intrinsic structure”?
- what is meant under “photon fluctuates”?
- if photon is without intrinsic structure, quarks too?
- if $\gamma \approx VM$, why $\sigma_{\gamma p}(W, Q^2)$ grows faster than $(W^2)^{0.08}$ already at $Q^2 = 2 \text{ GeV}^2$?

In QFT it is difficult to distinguish between the effects coming from structure from those due to interaction.

It makes sense to talk about particles corresponding to fields appearing in the basic lagrangian fundamental particles and those that have no such correspondence composite particles but even fundamental particles have properties closely resembling those of the composite ones. Structure is among them.
Tools to investigate it

- **DIS** on γ (LEP)
- **JET** (or heavy quark) production (HERA and LEP)

Jets as:

- objects of study via jet
 - profiles
 - shapes

$$\psi(r) \equiv \frac{1}{N \text{ evts}} \sum_{i} \frac{E_T^{(i)}(r' \leq r)}{E_T(R)}$$

- tools for investigation of other phenomena

These two aspects are closely related but only the latter aspect covered in this talk.

DIS on γ and jet production are complementary.

So far, most of the data and analyses on jet production from comes from HERA, but LEP catches on.
In virtual photon collisions there are in general two scales: photon virtuality P^2 and $Q_{\text{hard}}^2 \sim E_T^2$. Depending on their relation we distinguish

- $P^2 \gg Q_{\text{hard}}^2$: “DIS” $\leftrightarrow \gamma^*$ structureless
- $P^2 \sim Q_{\text{hard}}^2$: theoretically least transparent
- $P^2 \ll Q_{\text{hard}}^2$: “Photoproduction” $\Rightarrow \gamma^*$ structure

General picture: direct and resolved contributions

The concept of the resolved γ^* implies the use of Equivalent Photon Approximation
Equivalent Photon Approximation

\[f_{\gamma^T/e}(x, P^2) = \frac{\alpha}{2\pi} \left(\frac{1 + (1 - x)^2}{x} \frac{1}{P^2} - \frac{2m_e^2 x}{P^4} \right) \]

\[f_{\gamma^L/e}(x, P^2) = \frac{\alpha}{2\pi} \frac{2(1 - x)}{x} \frac{1}{P^2} \]

- Similar \(P^2 \) dependences, but for different reasons
- \(f_{\gamma^L/e} \) vanishes at \(x = 1 \), but equals \(f_{\gamma^T/e} \) at \(x = 0 \)

Generic expression for hadron level cross-sections in resolved \(\gamma^* \) hard processes in ep collisions (\(k = T, L \))

\[
\sigma^h = \sum_{i,j,k} f_{\gamma^k/e}(P^2) \otimes f_{i/\gamma^k}(P^2, Q^2) \otimes \sigma_{ij}(P^2, Q^2) \otimes f_{j/p}(Q^2)
\]

\[
f_{i/\gamma^k}(P^2, Q^2) = \underbrace{f_{i/\gamma^k}(0, Q^2)}_{=0 \text{ for } k=L \text{ by g.i.}} + \frac{P^2}{\mu_k^2} f_{i/\gamma^k}^{(1)}(P^2, Q^2) \Rightarrow \text{finite at } P^2=0
\]

\[
\Delta(P^2, Q^2) \equiv \sigma(P^2, Q^2) - \sigma(0, Q^2) = \sum_{i,j} \Delta_i(P^2, Q^2) \otimes \sigma_{ij}(P^2, Q^2) \otimes f_{j/p}(Q^2)
\]

\[
\Delta_i(P^2, Q^2) = \frac{P^2}{\mu_T^2} f_{\gamma^T/e} \otimes f_{i/\gamma^T}^{(1)} + \frac{P^2}{\mu_L^2} f_{\gamma^L/e} \otimes f_{i/\gamma^L}^{(1)}
\]

\(\mu_k^2 \) determine small \(P^2 \) behaviour of \(\gamma^{*k} \)

\(\gamma^{*L} \) in principle as important as \(\gamma^{*T} \).

What determines \(\mu_k^2 \)?
To assess the accuracy of EPA in resolved γ^* jet production \textbf{HERWIG} was used to compare exact ME of the $2 \to 3$ subprocesses

$$e + q \to e + q + G$$

$$e + G \to e + q + \bar{q}$$

with convolutions of EPA with ME of binary processes

$$\gamma^* + q \to q + G, \quad \gamma^* + G \to q + \bar{q}$$

where, however, \textbf{only} $\gamma^* T$ was included. Results depend in principle on

- photon virtuality P^2
- hard scale Q^2
- jet E_T and η
- photon energy, e.g. y
- subprocess type
Conclusions from the comparison:

a) **Strong** dependence on y
 - good agreement for **standard** cuts on y
 - poor agreement for **low** y, e.g. low photon energy

b) Little dependence on E_T^{jet}

c) Some, but small, dependence on the process type

d) For $0.2 \leq y \leq 0.8$ **very good** agreement also differentially in both η and E_T^{jet}

what does it imply for the resolved γ^*?

Plot $\langle yx_\gamma \rangle (x_\gamma)$

![Graph]

EPA expected to apply down to $x_\gamma \sim 0.1$
Jets in danger: the associated soft activity

Properties of jets and their cross-sections require and are influenced by the associated soft activity, unrelated to jet production dynamics. Two models for its origin

Multiple parton interaction:
additional parton level collision via LO QCD, implemented in **PYTHIA**, governed by p_T^{min}, data require very low $p_T^{\text{min}} > 1 - 2 \text{ GeV}$! Does it make sense to use PQCD for such low scale?

Soft underlying event:
additional soft collision of colorless remnant clusters, implemented in **HERWIG**, governed by parameter (PRSOF) specifying its frequency, data (H1) require moderate value PRSOF ≈ 0.1.

Good understanding of event structure outside jets is crucial for proper interpretation of jet data in term of photon (and proton) structure

Corresponding parameters must be determined from comparison of data with thery in this region, not by fitting the jet cross-sections. Measures:

jet pedestals: characterize immediate vicinity of jets

transverse energy flow outside jets in a fixed η range

Data as well as MC suggest their dependence on P^2 – weak
E_T^{jet} – weak

η^{jet} – strong!

Example of a benign influence: $d\sigma/d\eta$ distribution for $E_T^{(1)} \geq 7 \text{ GeV}, E_T^{(2)} \geq 5 \text{ GeV}$ as given by HERWIG

but much worse scenario possible!
Described, as for hadrons, by parton distribution functions (PDF), satisfying evolution equation (EE) with inhomogenous term in the quark channel.

For quarks the solution is written as a sum

\[f_{q/\gamma}(x, M^2) = f_{q/\gamma}^{\text{PL}}(x, M^2) + f_{q/\gamma}^{\text{HAD}}(x, M^2) \]

of a particular solution of the full inhomogenous EE, called pointlike part and general solution of the corresponding homogenous EE, called hadronic part.

Conventional viewpoint:

- hadronic part necessary for consistency and containing nontrivial information, while
- pointlike part calculable, i.e. “trivial”

BUT: the separation is ambiguous as there is infinite number “pointlike” solutions, differing by the initial condition

\[f_{q/\gamma}^{\text{PL}}(x, M_0^2) = 0 \]

Example: SaS1 \((M_0^2 = 0.36 \text{ GeV}^2)\), SaS2 \((M_0^2 = 2 \text{ GeV}^2)\)
Jets in virtual photon collisions

Several sources of complications with respect to real γ:

1. Terms in EPA with no probabilistic interpretation
 Difficult to quantify, probably small effects, $\mu^2 \approx S^2$

2. off–shell ME for γ–parton collisions
 explicit calculations give $\mu^2 \approx s^2 \Rightarrow$ negligible

3. virtuality dependence of photonic PDF:
 - in QED: $\mu^2 \sim m_q^2 \rightarrow$ important for heavy Q
 - in QCD: μ^2 expected to be a parameter
 characterizing large distance properties of strong interactions

4. contribution of the longitudinal photon: probably important, almost entirely unexplored

Models of the P^2–dependence of photonic PDF
Drees–Godbole: simple suppression factor

\[
L \equiv \frac{\ln((M^2 + \omega^2)/(Q^2 + \omega^2))}{\ln((M^2 + \omega^2)/\omega^2)} \equiv 1 - \frac{P^2}{\omega^2 \ln(M^2/\omega^2)}
\]

governed by \(\omega \to \mu^2 \approx \omega^2 \ln(M^2/\omega^2) \)
data suggest \(\omega \sim 0.1 \text{ GeV} \)

Glück, Reya, Stratman: \(P^2 \) dependent initial condition

Schuler–Sjöstrand: based on dispersion relations in \(P^2 \)

\[
q_{\gamma}^{\text{HAD}}(M^2, P^2) \propto \left(\frac{m_V^2}{m_V^2 + P^2} \right)^2 \to 1 - 2 \left(\frac{P^2}{m_V^2} \right)
\]

\[
q_{\gamma}^{\text{PL}}(M^2, P^2) \propto \int_{M_0^2}^{M^2} dk^2 \frac{k^2}{(k^2 + P^2)^2}
\]

\[
\to \ln \frac{M^2}{M_0^2} - 2 \left(\frac{P^2}{M_0^2} \right)
\]

\[
q_{\gamma}(M^2, P^2) = q_{\gamma}(M^2, 0) - 2 \left(\frac{P^2}{m_V^2} + \frac{P^2}{M_0^2} \right)
\]
Substantial decrease already at $P^2 \sim 0.5$ GeV2
Comparison with NLO calculations

Complications concerning the cuts on jet E_T. Three classes of E_T cuts:

Symmetric: $E_T^{(1)}$, $E_T^{(2)} \geq E_T^c$

Asymmetric: $E_T^{(1)} \geq E_T^c + d^c$, $E_T^{(2)} \geq E_T^c$

Hybrid: $E_T^{(1)} + E_T^{(2)} \geq 2E_T^c$, $E_T^{(2)} \geq E_T^c - d^c$
real photon: several NLO parton level calculations
Kramer, Klasen, Kleinwort
Owens, Harris
Aurenche, Fontannaz,...
Frixione, Ridolfi

virtual photon: only one so far
Kramer, Klasen, Pötter (hep-ph/9804352, DESY 98-046)
Interpretation of the comparisons with data nontrivial
even at large E_T^{jet} because of the
- the influence of additional soft activity
- the dependence on jet parameters

Note:
for $P^2 > 0$ **no mass singularities** in the direct
contribution requiring subtraction \Rightarrow
unsubtracted direct contribution can alone be
compared to data

Alternative:
subtract terms
$$P_{q/\gamma}(z) \ln \frac{M^2}{-P^2}$$
by including them in $q_{\gamma}(M^2, P^2)$ and define, as for the
real photon, the **subtracted direct contribution**
1995 ZEUS Preliminary

$\sigma_{\text{dijet}}(x_y < 0.75)/\sigma_{\text{dijet}}(x_y \geq 0.75)$

k_t Jetfinding

$Q^2 (\text{GeV}^2)$
ZEUS 1994

(a) $E_T^{\text{min}} = 6$ GeV $x_{\gamma}^{\text{OBS}} \geq 0.75$
(b) $E_T^{\text{min}} = 8$ GeV $x_{\gamma}^{\text{OBS}} \geq 0.75$

(c) $E_T^{\text{min}} = 11$ GeV $x_{\gamma}^{\text{OBS}} \geq 0.75$
(d) $E_T^{\text{min}} = 15$ GeV $x_{\gamma}^{\text{OBS}} \geq 0.75$

(e) $E_T^{\text{min}} = 6$ GeV $0.3 < x_{\gamma}^{\text{OBS}} < 0.75$
(f) $E_T^{\text{min}} = 8$ GeV $0.3 < x_{\gamma}^{\text{OBS}} < 0.75$

(g) $E_T^{\text{min}} = 11$ GeV $0.3 < x_{\gamma}^{\text{OBS}} < 0.75$
(h) $E_T^{\text{min}} = 15$ GeV $0.3 < x_{\gamma}^{\text{OBS}} < 0.75$
Is there a need for virtual photon structure?

Question:
For which P^2 do we need the hadronic component?

Answer:
Difficult because of ambiguity in the separation of pointlike and hadronic components. Despite this uncertainty my personal answer is YES.
Prospects for future

Ongoing analyses at LEP 2 by

DELPHI: “window of opportunity” in the range
\(P^2 \in (0.3, 1) \text{ GeV}^2 \)

OPAL:?

and HERA by both

H1 (talk by M. Taševský)

ZEUS:

will extend the region of accessible \(P^2, x_\gamma \text{ and } E_T \) and provide more statistics for detailed investigations of the photon structure