The Laser: a Historical Perspective

Orazio Svelto
Polytechnic School of Milano
National Academy of Lincei

Institute of Physics of the AS CR
Prague, Czech Republic, June 4 2014
Plan of this Talk

♦ The race to make the first laser
♦ Early developments in laser science (1960-1970)
♦ The birth of nonlinear optics
♦ A bridge between nonlinear optics and laser physics: ultrafast laser science
♦ Historical remarks on Nobel Prizes
♦ Early developments in laser applications (1960-1970)

Very coarse review of some of most important achievements with a few anecdotes and curiosities
The race to make the first laser
Starting of the Race

♦ Race started with Schawlow and Townes paper (middle 1958)

A.L. Schawlow and C.H. Townes *Infrared and Optical Masers*
Phys. Rev. **112**, 1940 (1958)

♦ Several laboratories, mostly in U.S., involved
Bell Labs, TRG, Columbia Un., IBM labs, Hughes, American Optical
Lebedev Inst., Moscow Power Inst., Oxford Univ.
October 1957: Graduate student at Columbia University, after talking with Townes, Gould asks a notary public to authenticate a first laboratory notebook (9 pages) containing several ideas about lasers.

August 1958: after receiving reprint of Schawlow and Townes paper, Gould asks a City College professor to sign (as read and understood) a second notebook (23 pages).
Two notebooks ⇒ thirty-year patent war (particularly against Schawlow-Townes patent)

After several defeats, Gould won his patent suit

Gould the real inventor of the laser?

The “legal” truth does not always coincide with the “scientific” truth (i.e. Gould won where he deserved to lose)

Curiosity: Gordon Gould went to work at TRG, which was awarded a millionaire grant to make a laser according to the proposal by Gould. Gould was however prevented to work on his own ideas, since researches were done at a classified area in TRG.
The Invention of the first Laser

On May 16, 1960, first laser action was achieved by Theodore H. Maiman (Ruby Laser)

The scientific community was astounded: (a) The simplicity of the components used. (b) The 3-level nature of the laser transition. (c) The type of laser excitation (pulsed by a flashlamp)

Curiosity: T.H. Maiman, a young scientist at that time, won the race with a very limited investment by Hughes.
Th.H. Maiman Holding the first Laser
The History of Maiman Publication

♦ Physical Review Letters rejected his first publication (Optical Maser Action in Ruby, June 2010)

♦ A paper with similar content accepted by Nature (6 Aug. issue)

♦ During the press release organized by Hughes in N.Y., more extensive paper was taken away and published on a rather obscure British Journal

July 7, 1960 New York

Not the true first laser! Immediately duplicated in many labs (TRG, IBM, Bell Labs). Actually it worked better than the original one by Maiman!
End of the Race (1960)

♦ May 16 1960:
First laser demonstration by Maiman

♦ A few months later:
P.P. Sorokin et al. U$^{3+}$:CaF$_2$ (2.5 µm) Sm$^{2+}$:CaF$_2$ (∼700 nm) [4 level lasers, first rare-earth laser, cryogenic temperature]

♦ December 1960:
A. Javan et al. He-Ne laser (1.15 µm); the first cw laser; the first gas laser; the first electrically excited

♦ By the end of 1960:
quite different types of lasers were operated ⇒ door opened to all successive developments
The Working-Horse for Laser Physics
Directionality of a Laser Beam
Early Developments in Laser Physics
(1960-1970)
A very Exciting Period

♦ Most important new lasers and phenomena related to physics of lasers (Relaxation Oscillations, Q-Switching, Mode-Locking, Single-mode oscillation)

♦ Most important phenomena related to laser-matter interaction (e.g. nonlinear optics, high-resolution spectroscopy, ultrafast optical sciences)
Q-Switching

♦ Attributed to:
 R.W. Hellwarth, *Control of Fluorescent Pulsations*

♦ Actually
 The idea of Q-switching was already contained in one of two notebooks of G. Gould ⇒ He lost his patent suit against Hughes (the legal “truth” did not coincide with the scientific truth i.e. Gould lost where he deserved to win and won where he deserved to lose)
Q-Switching

♦ Realized by
 F.J. McClung and R.W. Hellwarth, *Giant Optical Pulsations from Ruby*
 J. Appl. Phys. 33, 828 (1962)

♦ Curiosity: Accidental discovery of stimulated Raman scattering
 E.J. Woodbury and W.K. Ng, *Ruby Laser Operation in the near IR*
 Proc. IRE 50, 2367 (1962)
Mode-Locking

◆ First demonstration of synchronous intracavity modulation:
 Karl Gürs, *Innere Modulation von optischen Masern*
 Z. für Physik, **172**, 163 (1963)

◆ Explanation in terms of mode-locking

◆ Passive ML of Q-switched lasers (beginning of ultrafast sciences):

◆ Curiosity:
 Initial experiments performed for optical communications
The Birth of Nonlinear Optics
Second Harmonic Generation

♦ First discovery
 P.A. Franken et al., *Generation of Optical Harmonics*

♦ The door to real-word applications
 J.A. Giordmaine, *Mixing of Light Beams in Crystals*
 P.D. Maker et al., *Effects of Dispersion and Focusing on the Production of Optical Harmonics*
“...The arrow at 3472 Å indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 Å is very large due to halation.”
A Bridge between Laser Science and Nonlinear Optics:

Ultrafast Laser Science
Historical Evolution of Pulse Duration (Phase 1)

Solid state (Ruby and Nd) and Dye Lasers
From picosecond to subpicosecond

- Solid-State Laser
- Dye Laser
- Compression
The colliding-pulse mode-locked (CPM) dye laser
[E.P. Ippen and C.V. Shank (1974),
F.L. Fork, B.I. Greene]

Breaking the Picosecond Barrier

100 – 27 fs
Application: Femtochemistry

Ahmed H. Zewail, Nobel Prize in Chemistry (1999)

ICN, paradigmatic molecule for dissociation reactions and photo-fragment spectroscopy
Historical Evolution of Pulse Duration (Phase 2)

From sub-picoseconds to femtoseconds
High peak-intensity lasers

- Ti:sapphire Compression
- Solid-State Laser
- Dye Laser

- 5 ps
- 4,5 fs
Newcomers:
Tunable Solid State Lasers

- Laser-pumped solid-state lasers (beginning of nineties)
 - Alexandrite
 - Cr:LISAF
 - Cr:YAG
 - Ti:Sapphire

Bye-bye to dyes
High Peak Intensities Lasers

Chirped Pulse Amplification (CPA)
D. Strickland and G. Mourou (1985)

- Ti:Al$_2$O$_3$: 1-10 mJ; f = 1-10 kHz
- TTT [Terawatt Table Top] Lasers: 100 TW (5 J, 50 fs)
- Petawatt-class Lasers (1,5 PW, i.e. 580 J and 460 fs)
Historical Evolution of Peak Intensity

Nonlinear QED: $E_e \cdot \lambda_0 = 2m_0c^2$

Ultra-Relativistic Optics

Relativistic Optics

Bound electrons

Focused Intensity (W/cm²)

1 eV

1 MeV

1 TeV

1 PeV

$E_Q = m_pc^2$

$E_Q = m_ec^2$

mode locking

Q-switching

ELI

CPA
High Order Harmonic Generation (HHG)

Very-short pulses in the X-UV range

Odd harmonics of the red light are generated up to the soft X ray region

Anne L’Huillier pioneering work [PRL 70, 774 (1993)]
Historical Evolution of Pulse Duration (Phase 3)
From Femtoseconds to Attoseconds

![Graph showing the historical evolution of pulse duration with key points for Dye, Ti:saff., and HHG at 4.5 fs and 130 as, respectively.]

- 4.5 fs
- 130 as [80 as]
The Future of Ultrafast Sciences

- Extremely-high peak intensity \((10^{22} \div 10^{25} \text{ W/cm}^2) \)
 High-field Physics

- Extremely-short time duration \((100 \div 10 \text{ as}) \)
 Attosecond Science
Historical Remarks on Nobel Prizes
Period Number 1
(1964-1981)

♦ 1964, Physics
 C. H. Townes (1/2) and N.G. Basov and A. M. Prokhorov (1/2)
 for fundamental work in the field of quantum electronics, which
 has led to the construction of oscillators and amplifiers based on
 the maser-laser principle

♦ 1971, Physics
 Denis Gabor
 for his invention and development of the holographic method

♦ 1981, Physics
 Nicolas Bloembergen an Arthur L. Schawlow
 for their contributions to the development of laser spectroscopy
Period Number 2
(1997-2012)

♦ 1997, Physics
Steven Chu, Claude Cohen-Tannoudji and William D. Philips
for development of methods to cool and trap atoms with laser light

♦ 1999, Chemistry
Ahmed H. Zewail
for his studies of the transition states of chemical reactions using femtosecond spectroscopy

♦ 2000, Physics
Zhores I. Alferov and Herbert Kroemer
for developing semiconductor hetrostructures used in high-speed-electronics and -optoelectronics

♦ 2001, Physics
Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman
for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates
Period Number 2
(1997-2012)

- 2005, Physics
 Roy Glauber (1/2),
 for his contribution to the quantum theory of optical coherence
 John L. Hall and Theodore W. Hänsch (1/2)
 for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique

- 2009, Physics
 Charles K. Kao (1/2)
 for ground-breaking achievements concerning the transmission of light in fibers for optical communications

- 2012, Physics
 Serge Haroche and David Wineland
 for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems
Early developments in laser applications (1960-1970)
A Very Frustrating Period (1960-1970)

Application-wise many initial attempts failed

- **Medicine**: retina photocoagulation, port-wine stains, melanoma (pulsed ruby)
- **Optical Communications** (Ruby or He-Ne, hollow-fibers or periodic gas lenses; optical fibers 1000 dB/km)
- **Material working** (50 W/m, slow-axial-flow CO\(_2\) laser)

A bright solution looking for a problem
A 2 kW CO_2 Laser
Year seventies

Medicine: retina photocoagulation (Ar\(^+\) ion), port-wine stains (pulsed dye lasers), melanoma (forget about it)

Optical Communications: DH semiconductor laser (Alferov, 1970), Optical Fibers (Kao, 1966, Corning 17 dB/km, 1970)

Material working: fast longitudinal flow CO\(_2\) laser (late seventies)
Fast Longitudinal Flow CO$_2$ Laser
Conclusions

♦ Laser, Early Days: A Bright Solution Looking for a Problem

♦ Laser, ~ Fifty Years Afterwards: The Bright Solution for many Problems in Science and Technology

♦ Bright solution in science: So far, 21 scientists have been awarded the Nobel Prize for researches on lasers or with lasers

♦ Bright solution in technology: “It has changed the way we live” (from letter of Barak Obama for the 50th anniversary of laser)

♦ It is one of the most important inventions of last century. It is going to play a even more important role in this century: The Century of the Photon. (2015: The Year of Light and Light Technologies)