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Petr Kužel (2008–2018)
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1. Introduction

A. Length scales: averaging of electric and magnetic quantities

A.1. Atomic scale

The classical electromagnetic theory describes the electromagnetic field and its interaction with
the matter which consists, on an atomic scale, of an ensemble of charged particles. The field
which enters into play is local and it may vary by many orders of magnitude on an inter- and
intra-atomic scale (namely in the vicinity of charges). The coupling between charges and the field
is described by Maxwell-Lorentz equations for the local electric field e and magnetic induction
b:

r · e =
⇢

"0
(1.1a)

r · b = 0 (1.1b)

r ⇥ e +
@b

@t
= 0 (1.1c)

1

µ0

r ⇥ b � "0
@e

@t
= j , (1.1d)

where j and ⇢ denote the local current and density of charge, respectively. Employing the
classical mechanics view of point charges, these quantities have a discrete nature expressed by
Dirac �-functions:

⇢(r, t) =
X

↵

q↵ �(r � r↵(t)) , (1.2a)

j(r, t) =
X

↵

q↵ �(r � r↵(t)) . (1.2b)

The solution of the electromagnetic problem, i.e., of equations (1.1) and (1.2) supplemented by
the Lorentz force f = ⇢e + j ⇥ b on a macroscopic scale, would imply finding the positions
(and their time evolution) of a huge number of charges. This is not feasible and also such
detailed information is not needed for practical applications. It is then convenient to proceed
to a space averaging of the local quantities on the atomic scale. The appropriate scale for
this averaging is ⇠ 10 nm, which means that this concept is valid up to the frequencies of
radiation in the vacuum UV spectral range (� � 10 nm). The local response of charges (the
current of free charges and the dipolar polarization of the bound charges) then can be taken into
account by complex and frequency-dependent material parameters " (dielectric permittivity) and
µ (magnetic permeability) which describe the macroscopic polarization P and magnetization M
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of the medium and connect the spatially averaged vector fields E = hei and B = hbi to newly
introduced vectors D and H through the so called constitutive relations:

D(!) = "(!)"0E(!) = "0E + P (1.3a)

B(!) = µ(!)µ0H(!) = µ0(H + M) , (1.3b)

which should satisfy the Maxwell equations for macroscopic fields1:

r · D = 0 (1.4a)

r · B = 0 (1.4b)

r ⇥ E +
@B

@t
= 0 (1.4c)

r ⇥ H � @D

@t
= 0 . (1.4d)

The quantities e and b contain the near-field information, i.e., the variation of local fields on
the atomic scale, while the vectors E, D, H, B describe correctly the far field but we cannot
use them to retrieve the near field.

Note that in this textbook we use the convention where the harmonic wave in the complex
notation is described by the phase factor e+i!t and the complex material response is then given
by " = "0 � i"00, µ = µ0 � iµ00.

A.2. Wave equation, plane harmonic waves

The Maxwell equations along with the constitutive relations represent a set of coupled di↵erential
equations for four field vectors. It would be then convenient to derive equations which determine
each of the field vectors separately. We consider an angular frequency component !, we apply
the curl operator (r⇥) to (1.4c) and the operator @/@t to (1.4d); comparing the two resulting
relations we obtain:

r ⇥ 1

µ
(r ⇥ E) � !2

c2
"E = 0 . (1.5)

Similarly, one may find for the magnetic field:

r ⇥ 1

"
(r ⇥ H) � !2

c2
µH = 0 . (1.6)

In the general case we cannot simplify these equations further because we wish to study inho-
mogeneous media (i.e., both µ and " can depend on r).

Homogeneous case In the homogeneous case the solutions of wave equations are the plane
monochromatic waves:

E = E0 ei(!t�k·r) , H = H0 ei(!t�k·r) ; (1.7)

the angular frequency ! and the wave vector k being connected by

|k|2 ⌘ k2 = "µ
!2

c2
. (1.8)

We can introduce the complex refractive index N = n � i

k =
!

c
N . (1.9)

1Note that we can—without loosing the general character of the solutions of Maxwell equations—omit
the current density in (1.4d) and the density of free charges in (1.4a). We just need to postulate that all
the e↵ects related to both bound and free charges are described by a complex dielectric permittivity ".
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Back to the Maxwell equation (1.4c), using plane monochromatic wave solution we obtain

ik ⇥ E0 = i!µµ0H0 , (1.10)

or, by substituting the unit vector in the propagation direction s = k/k:

H0 =

r
"0
µ0

r
"

µ
(s ⇥ E0) . (1.11)

The vectors k, E, and H form a right-handed basis and it follows that H0 (and B0) are
unambiguously determined by k and E0. We define the vacuum wave impedance ⌘0 and the
relative wave impedance Z:

⌘0 =

r
µ0

"0
⇡ 377 ⌦ , (1.12)

Z =

r
µ

"
(1.13)

we thus obtain the following relations for the field amplitudes:

E0

H0

=

r
µ0

"0
⌘ ⌘0 ,

E0

B0

=

r
1

µ0"0
⌘ c . (1.14)

The plane harmonic waves form a complete orthogonal basis; consequently, any solution of
the wave equation can be expressed as a linear combination of these modes. The time domain
shaping of optical pulses can be described by the integral

E(r, t) =

Z
E(r, !)ei!tdt (1.15)

and the distribution of the field in the space can be defined using integration over the wave
vector k:

E(r, t) =

ZZZ
E(k, !)ei(!t�k·r)

dk , (1.16)

where we must keep in mind the relation (1.8) between ! and k.

Inhomogeneous case:

scaling property

Maxwell equations feature the so called scaling property, which means
that if an inhomogeneity is scaled in the space the electromagnetic waves
behave in exactly the same manner on both scales providing that the

wavelength (frequency) is also appropriately scaled. Let us introduce a scaling by a coe�cient
a:

1

a
r = r

0 . (1.17)

The inhomogeneous properties of the permittivity and permeability are scaled by this factor:

"̃(r0) = "(r) , µ̃(r0) = µ(r) . (1.18)

We introduce a scaled frequency !0 = a! and the nabla operator scales in the following way:
r0 = ar. We formally define the field in the new coordinates: E0(r0, !0) = E(r, !). The wave
equation (1.5)

1

"
r ⇥ 1

µ
[r ⇥ E(r,!)] =

!2

c2
E(r,!) (1.19)
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will read after the scaling substitution

1

"̃

1

a
r0 ⇥ 1

µ̃


1

a
r0 ⇥ E

0
(r

0
,!

0
)

�
=

!2

c2
E(r

0
,!

0
) , (1.20)

i.e.

1

"̃
r0 ⇥ 1

µ̃

⇥
r0 ⇥ E

0
(r

0
,!

0
)
⇤

=
!02

c2
E(r

0
,!

0
) , (1.21)

which does not depend on a. We conclude: one obtains the same electromagnetic properties
of an inhomogeneous structure in two di↵erent spectral regions by an appropriate scaling of its
dimensions providing that the values of " and µ are the same in these frequency regions.

In periodic media the propagation of electromagnetic waves will be described by a wave
vector k. We will introduce the dimensionless quantities K = ka/(2⇡) and ⌦ = !a/(2⇡c); by
means of these quantities the electromagnetic properties of any structure can be described in
a general manner without introducing any characteristic length scale. All equivalent structures
(obtained only by scaling) will have the same properties in an appropriately scaled frequency
range.

A.3. Classification of photonic structures

The dielectric polarization of media is connected to a dynamical separation of bound charges
which define the electric dipole moments; the magnetic polarization in materials then arises from
the orbital currents or from unpaired electron spins. The characteristic distances and sizes of
the current loops are then on sub-nm scale which may impose some limits to the strength of
the resonant interaction with the field. Namely, the resonant phenomena in magnetic systems
tend to occur in the microwave range which results in an absence (or at least weakness) of the
natural magnetic material response at THz and higher frequencies.

Patterning the materials brings another length scale into play. The macroscopic fields on
the atomic scale may now regain a local character with respect to the length scale of the newly
introduced inhomogeneity (artificial structure). We assume this structure periodic; the size of
the unit cell is chosen to be substantially smaller than the targeted wavelength and, at the
same time, much larger than the interatomic distances. Patterns within the unit cell of such a
structure can be considered as artificial ”meta-atoms” characterized by electric and magnetic
dipole moments. These dipole moments are now defined not only by the materials used but also
by the geometry of the artificial structure, i.e., by the extent of the possible charge separation and
by the area of the surface delimited by the current loops. On the one hand, at the length scale
of the wavelength the meta-atoms constitute elementary electric and magnetic dipole moments
which can be macroscopically described by e↵ective permeability and permittivity obtained by
an averaging procedure (analogous to that used at the atomic scale); on the other hand, the
magnitudes of the dipoles may significantly exceed those observed on the atomic scale and the
positions of the resonant frequencies can be tailored by the geometry and the length scale of the
structure.

The very important parameters are the dimensions of the unit cell and of the individual
meta-atoms (denoted by l and D, respectively, in the schemes in Table 1.1) or, more precisely,
their ratios to the wavelength. We may distinguish three di↵erent regimes which are described
below and summarized in Table 1.1.

Composites By composites we mean here the structures which can be described within a static
approximation which involves the standard e↵ective medium theory (column 3 in

Table 1.1). For example, if we consider a purely dielectric composite, then the electromagnetic
field can be considered as almost homogeneous inside the dielectric inclusions. This is expressed
by the conditions for the applicable radiation wavelengths � � p

"2l and � � p
"1D in Table 1.1.
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newly introduced inhomogeneity (artificial structure). Patterns within the unit cell of the 
metamaterial structure can be considered as artificial metamaterial atoms characterized by 
electric and magnetic dipolar moments which are now defined not only by the material used 
but also by the geometry, i.e. by the extent of the possible charge separation and by the area of 
the surface delimited by the current loops. The size of the unit cell is chosen to be 
substantially smaller than the targeted wavelength and, at the same time, much larger than the 
interatomic distances. On the one hand, at the length scale of the wavelength the meta-atoms 
constitute elementary electric and magnetic dipole moments which can be macroscopically 
described by effective permeability and permittivity obtained by an averaging procedure 
(analogous to that used at the atomic scale); on the other hand, the magnitudes of the dipoles 
may significantly exceed those observed on the atomic scale and the positions of the resonant 
frequencies can be tailored by the geometry and the length scale of the structure. 
 

Category Atomic scale 
~ 10 nm Composites Metamaterials Photonic crystals 

Scheme  
 
 

   
 

microscopic 
description e, b Dielectric or metallic inclusions: l, D, Hi (or Vi)� periodic H�

macroscopic 
description 

averaging: 
E, B, D, H 

EMA  
(Maxwell-Garnett, 

Bruggeman…) 

Extension of EMA 
(Mie scattering theory) 
other homogenization 

procedures 

Band structure 

validity of 
macroscopic 
description 

nm10!!O  
D

Dl

1

22 ,

H!!O

HH!!O
 

D

Dl

1

22 ,

H|O

HH!!O
 lH|O  

effective 
parameters H, P Heff (Peff = 1) Heff, Peff — 

origin of 
resonant 

behaviour 

polarization of 
bound charges 

 
orbital currents, 

spins 

Dielectrics: 
no geometrical 

resonance 
 

Metals: 
plasmonic resonance 

each element is 
individually resonant 

 
no coupling between 

elements 

resonances due to  
interferences 

 
coupling between 
periodically distri- 

buted elements 

reciprocal 
space 

(reciprocal 
parameter G) 

—  
0 | Z/c << G�

below the first bandgap 
  

Z/c < G 
 

Band structure with 
bandgaps 

 
spatial dispersion of 
the photonic crystal 

Table 1: Inhomogeneities on various length scales compared to the wavelength and their 
description.  (EMA = effective medium approximation) 

The very important parameters are the dimensions of the unit cell and of the individual 
meta-atoms (denoted by l and D, respectively, in the schemes in Table 1) or, more precisely, 
their ratios to the wavelength. We may distinguish three different regimes which are described 

l

D

H2

H1 

H1 + 
– 

Table 1.1: Inhomogeneities on various length scales compared to the wavelength and their
description. (EMA = e↵ective medium approximation)

We do not expect any additional geometry-related resonances in this spectral range and the
medium can be described by e↵ective medium approximation (EMA). Within this approximation
the e↵ective permittivity of the composite is evaluated in terms of the dielectric functions of
the components, of their shape and of their volume fractions. No anomaly of the magnetic
permeability is expected here (µe↵ ⇡ 1) if we deal with intrinsically non-magnetic components.
The two most widely used e↵ective medium models are the Maxwell-Garnett model and the
Bruggeman model described in Chapter 3 of this textbook.

The e↵ective medium approach can be also used for metal-dielectric composites with very
small metallic particles where the conductivity (connected to the imaginary part of the permit-
tivity) of inclusions dominates. The condition � � |p"1|D in a metal leads then essentially to
the requirement that the metallic particle size is much smaller than the electromagnetic skin
depth. Then the details of the metal structure are too small to lead to shape-dependent reso-
nances in the targeted spectral range (the condition � � c

p
LintCint is satisfied, where Lint and

Cint are internal inductance and capacitance of a meta-atom which are related to its shape and
morphology).

The response of sub-wavelength metallic particles is very specific and di↵erent from that
of dielectric particles. This is related to the fact that the metallic conductivity inherently
involves the plasmonic resonance which has a longitudinal character in a homogeneous medium
(the frequency of the corresponding transverse resonance of charge carrier motion vanishes due
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to the lack of the restoring force). Inhomogeneities introduced in the medium then lead to
the occurrence of a restoring force owing to the charge separation. In other words, the sub-
wavelength metallic particles exhibit a high dipolar polarizability which depends on their size.
The applied optical electric field then can induce charges at their edges which lead to a high
e↵ective dipole moment of the particles and a transverse plasmonic resonance may appear in "e↵
in the target frequency range. The plasmonic resonance is not critically dependent on the shape
of meta-atoms and it is essentially due to the nature of metallic conductivity; for this reason it
can be described by a standard EMA in analogy with the dielectrics.

Metamaterials In the metamaterials the electromagnetic field is inhomogeneously distributed
within the fine details of the unit cell structure. The incident radiation scatters

on the pattern and gives rise to the resonances which are closely connected to this inhomogeneous
distribution of the local field. In principle, each scattering element is individually resonant and
no interaction (interference) between the neighboring unit cells needs to be considered in order to
obtain the e↵ective resonant behavior (in practice, weak coupling between neighboring elements
always exists). Strictly speaking, as the interaction between the meta-atoms is negligible, their
periodic distribution is not required and a structure with some degree of randomization of the
position of meta-atoms should exhibit a very similar response to an exactly periodic structure.
However, in this textbook we will most often assume that the metamaterial pattern is periodic;
this assumption is compatible with many technological processes (lithographic deposition, etch-
ing etc.) which usually provide periodic structures and it also allows us to benefit of the notion
of the unit cell and of the related description in the reciprocal space.

D"

Figure 1.1: Example of meta-atoms—building blocks of a metamaterial; D ⌧ �. Such
patterns introduce new electric and magnetic dipoles on the wavelength scale.

We deal with dielectric or metallic inclusions (scatterers) forming a motive of the structure
characterized by a high permittivity or conductivity, i.e., |"1| � |"2|. The size of the individual
scatterers is much smaller than the wavelength of the probing radiation in vacuum (or in the
surrounding medium 2). This enables a procedure of homogenization of " and µ in the sample,
i.e., attribution of e↵ective permeability and permittivity to the metamaterial. These e↵ective
parameters must then be able to describe the electromagnetic properties of the metamaterial
from the macroscopic point of view (transmission and reflection of the radiation).

The spatial distribution of the near field can be used, as originally proposed by Pendry,
for evaluation of the e↵ective properties of the medium. The tensors of e↵ective permittivity
and permeability of the metamaterial are defined as the ratios of suitably averaged electric and

6



magnetic displacements and fields:

"ij,e↵ =
hDii
hEji

, (1.22a)

µij,e↵ =
hBii
hHji

, (1.22b)

where the averaging procedures were inspired by the integral form of the Maxwell equations:
I

c

E · dl = � @

@t

Z

S

B · dS , (1.23a)

I

c

H · dl =
@

@t

Z

S

D · dS . (1.23b)

Here the fields are integrated over closed loops while the displacements are integrated over
surfaces delimited by these contours. Thus the macroscopic electric and magnetic fields hEi and
hHi need to be calculated as average values along a curve. Pendry et al. [J. B. Pendry et al.,
IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)] have proposed to average local field values
along Cartesian axes of the unit cell with dimensions a ⇥ b ⇥ c (which is chosen such that the
contour does not intersect the enclosed metamaterial pattern), e.g.,

hHix =
1

a

(a,0,0)Z

(0,0,0)

H · dr . (1.24)

In contrast, the components of the electric and magnetic displacements D and B are averaged
over the faces of the unit cell:

hBix =
1

b ⇥ c

Z

Syz

B · dS . (1.25)

The inhomogenous distribution of the electromagnetic field inside the unit cell practically does
not influence the average value of the fields while it strongly a↵ects the average value of the
displacement vectors. In this sense, highly inhomogeneous distribution of the near-field, re-
flecting a strong interaction of the radiation with the metamaterial pattern (a weak interaction
would not significantly change a quasi-homogeneous character of the incident plane wave within
the unit cell) may lead to high values of "e↵ and/or µe↵ which, in turn, describe the resonant
electromagnetic behavior of the structure. This rather heuristic averaging procedure has been
originally developed for metallic scatterers but it has been successfully used also in the case of
dielectric resonators. With metals it is possible to deposit planar (or even layered) structures on
a substrate such that their geometrical shape maximizes the electric and/or magnetic response,
i.e., the charge separation (electric dipole) and the current loop (magnetic dipole). The details
of the shape of such metallic inclusions then define the resonance frequency and the resonant
strength. The magnetic dipole moment is related to the currents flowing along metallic rings
and it can be induced if the magnetic field of the incident radiation points through the ring.

Photonic crystals As already pointed out, in the case of metamaterials the periodicity of the
structural pattern is not a requirement; each scattering element is individu-

ally resonant and the interaction between the neighboring unit cells is weak. On the other hand,
if the radiation wavelength becomes comparable to (or even smaller than) the characteristic
distances in the structure, interferences between scattered (partially reflected and di↵racted)
waves become an important issue: the category of photonic crystals shown in the last column of
Table 1.1 has only sense if we consider periodic structures. The condition � ⇡

p
"l then ensures
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that constructive and destructive interference phenomena may occur in the relevant frequency
range for some propagation and scattering directions. This leads to the formation of a photonic
band structure.

Let us define the periodicity of the dielectric or magnetic properties by the vector R =
ma+ nb+ lc, where a, b, and c are the vectors of the unit cell and m, n, and l are integers. It
means that "(r + R) = "(r), µ(R + r) = µ(r). In a periodic medium the field distribution can
be described by the Bloch theorem: the mode with the wave vector k is given by the product of
a plane wave and of a periodic function (with the same periodicity R as the permittivity and/or
permeability of the photonic structure); e.g., we can write for the electric field oscillating at
frequency !:

Ek(r, t) = exp(i!t) exp(�ik · r)
X

G

ek,G exp(�iG · r) , (1.26)

where G are vectors of the reciprocal lattice whose definition is: G · R = 2⇡p (p is an integer).
This condition ensures that the function defined by the sum is periodic as required and its shape
is defined by the coe�cients ek,G of the Fourier series. The above equation means that the Bloch
wave is a linear combination of plane waves with wave vector k, k + G, k � G, . . . :

Ek(r, t) = exp(i!t)
X

G

ek,G exp [�i(k + G) · r] , (1.27)

The sum runs over all reciprocal lattice vectors G and we now understand that we cannot
distinguish between modes with the wave vectors k and k + G, etc. and new eigenmodes are
defined by their particular linear combinations given by (1.27). These linear combinations will
form bands of the photonic crystal.

B. Dispersion curves

B.1. Reciprocal space: 1D case

These considerations lead us to the notion of the reciprocal space (space of wave vectors k) and
to the dispersion curves: !(k) dependences. Let us first consider waves in a homogeneous space.
The dispersion curve is given by (1.9):

K = n⌦ , (1.28)

i.e., it is a straight line as shown in Fig. 1.2(a). Now let us introduce an infinitesimal spatial
periodic perturbation of the permittivity in one dimension: "(x + mX) = "(x). The periodic
character of the perturbation leads us to the Bloch wave solution (1.27); it means that the
modes separated by the reciprocal lattice parameter G = 2⇡/X become coupled. These coupled
modes related to one specific value of the wave vector k are shown by full circles in Fig. 1.2.
Their coupling makes an equivalence between all the wave vectors which are separated by the
reciprocal lattice vectors. It is then possible to reduce the reciprocal space into a single Brillouin
zone by folding the dispersion curves as in Fig. 1.2(b): all the coupled modes then possess the
same wave vector k.

We then increase the magnitude of the perturbation. This starts to renormalize the eigen-
frequencies of the coupled modes and lifts the mode degeneracy at the Brillouin zone boundary,
see Fig. 1.3. In this way the photonic bands are formed and the forbidden bands (band gaps)
appear in between. As an example, we show in Fig. 1.4 the distribution of the electric field in a
one-dimensional photonic structure at the Brillouin zone boundary corresponding to Fig. 1.3(a)
and (b). In both cases the degeneracy is lifted at the 1 BZ boundary. The low-frequency branch
of the dispersion curve is called the “dielectric” branch because the electric field is concentrated
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Figure 1.2: (a) Dispersion of electromagnetic waves in the free space (with " = 13,
µ = 1). The modes marked by symbols couple together when an infinitesimal periodic
perturbation of the permittivity (with a period L] is switched on. (b) Dispersion curves
folded into the first Brillouin zone (1. BZ). In this representation the coupled modes
possess the same wave vector k.
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Figure 1.3: (a) Dispersion of a one-dimensional photonic crystals consisting of a period-
ically repeated bilayer AB with "A = 13, "B = 12 and period L. A band gap (frequency
band with no photonic states) opens at the Brillouin zone boundary K ⌘ kL/(2⇡) = 0.5.
(b) Dispersion of a similar photonic crystal with "A = 13, "B = 2: a higher contrast of
dielectric properties leads to the widening of the band gap.
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Figure 1.4: Field distribution in a one-dimensional photonic crystal at the Brillouin zone
boundary for the low-frequency “dielectric” branch (D) and high-frequency “air” branch
(A). These modes correspond to the dispersion curves shown in Fig. 1.3. Red lines show
the spatial variation of the refractive index. (a) "A = 13, "B = 12. (b) "A = 13, "B = 2.
For a small contrast between the permittivities (a) the field distribution is close to a
sinusoidal wave; for a high contrast between the permittivities (b) the modes in the Bloch
sum (1.26) are more strongly coupled which has as consequence a wider forbidden band
and a significantly distorted field distribution.

mainly in the high-permittivity parts of the photonic crystal (curves denoted as D in Fig. 1.4).
The field has nodes in the low-permittivity part of the photonic crystal.

In fact, in analogy with the quantum mechanics, the function 1/"(r) can be considered as a
potential and the frequency ! represents the energy. If the field is concentrated namely in the
regions with a low potential (high permittivity values), we obtain a lower energy of the system
(lower frequency) and vice versa. The upper dispersion branches are called “air” branches and
the field here concentrates in the low-permittivity part of the photonic structure (which is most
frequently air in real photonic crystals).

This is quite a general property of photonic crystals; it can be also compared to a basic
finding of the eikonal theory of the geometrical optics: the beam always bends towards the
high-permittivity part of the space, i.e., a high-permittivity region constitutes an “attractive
potential” for the field.

From the point of view of the dispersion curves in the reciprocal space, the spectral domain
where the periodic photonic structure can be described as a metamaterial remains on the lowest
dispersion branch below the first band gap; the condition � � p

"2l is equivalent to !/c ⌧ G
(where G is the reciprocal lattice parameter of the periodic photonic structure), i.e., we deal
with the wave vectors well below the Brillouin zone boundary. As the characteristic dimensions
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of the structure increase above the value of �/10 (we get closer to the Brillouin zone boundary),
the homogenization of the medium may progressively become possible only if we admit the
spatial dispersion (i.e., a dependence of "e↵ and µe↵ on the wave vector), which is a consequence
of the non-local character of the response of the structure and which is in agreement with the
existence of a band structure (the propagation of light cannot be simply described by a refractive
index value but a complex band structure of the photonic crystal must be considered). In the
metamaterial regime the lowest dispersion branch (i.e. the only one which fulfills the condition
!/c ⌧ G) is quite weakly coupled to the other branches via the Bloch sum since it is well
separated from the other branches in the frequency space. The metamaterial resonance then
cannot be related to collective phenomena (interferences within the photonic structure) but
arises due to the resonant behavior of the metamaterial motive (each metamaterial element is
individually resonant).

B.2. Density of states

The photonic crystals o↵er a possibility to design and modify the density of states %(!) of the
radiation. For example, the forbidden bands do not exhibit any propagative photonic state,
while some photonic bands can feature an enhanced density of states. The radiation properties
of molecules and atoms then strongly depend on the density of states of the surrounding pho-
tonic structure since it influences both the spontaneous and stimulated emission. Consider an
atom embedded in a photonic crystal with a radiation frequency falling into the band gap; its
spontaneous emission is then inhibited (or at least strongly suppressed), due to the photonic
properties of the environment.

To calculate the number of states within some volume in the k space we need to discretize
the values of the wave vector. This is usually done by imposing periodic boundary conditions;
e.g. in 1D:

Ek(x + L) = exp(�ikL)Ek(x) = Ek(x) , (1.29)

where L = mX, m being an arbitrarily chosen large integer. The first equality in (1.29) just
expresses the Bloch theorem and the second equality provides a discretization of k:

k =
2⇡p

L
. (1.30)

where p is another integer. The range in the k-space occupied by a single value of the discretized
wave vector is then 2⇡/L. Similarly, in the 3D case, the volume occupied by a single discrete k-
value is (2⇡)3/V , where V = L1L2L3 is a (large) volume where the periodic boundary conditions
have been imposed.

The density of states %(!) is defined as the number of states at frequency ! per unit frequency.
It means that the number of states in a small spectral range �! is equal to %(!)�!. The states
in the k-space form a mesh with equidistant spaces, as pointed out above; in the frequency
domain the states are not equidistant in general and their distribution (density) depends on the
dispersion !(k). For a example in the free space (with the dispersion ! = c|k| ⌘ ck) the states
in the range (!,! + �!) lie within a spherical shell with the k-space volume

�K = 4⇡k2
dk

d!
�! = 4⇡

!2

c3
�! . (1.31)

The number of states within this shell is 2�K ⇥ V/(2⇡)3, where the factor 2 takes into account
the double degeneracy of the dispersion curve (two orthogonal polarization states). We find that
the density of states per unit volume V is equal to

%(!) =
!2

⇡2c3
. (1.32)
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Figure 1.5: Illustration of the density of states for the dispersion !(k) in a 1D system.
The spacing between the neighboring k-values is equidistant, while that of !-values is not.
The mapping of �k onto �! provides the density of states.

In the case of the photonic crystal we usually need to evaluate the density of states belonging
to some particular band !n(k). 1D case is schematically shown in Fig. 1.5. The number of states
within the range �k is �k ⇥ L/(2⇡) = %(!)�!. From that we easily find that the density of
states per unit length L depends on the group velocity of light on this branch:

%(!) =
1

2⇡

1

d!(k)/dk
; (1.33)

in particular, a “slow light” with very flat dispersion curve exhibits a high density of states.
The situation is quite analogous in the 3D case; however, the complicated topology of the

problem usually requires a numerical calculation of the density of states (using calculations
based e.g. on Monte-Carlo algorithms). It is necessary to evaluate the volume in the k-space
delimited by frequencies ! and ! + �! on the dispersion curve. We can state in general that
flat bands (and namely those close to the 1 BZ boundary) will be associated with a large volume
in the k-space and, consequently, with a large density of states.

B.3. Reciprocal space: 2D case

We consider here an array of cylindrical dielectric rods forming a 2D photonic structure with a
square unit cell and a lattice parameter a as depicted in Fig. 1.6(a). In the reciprocal space we
obtain also a square lattice with the reciprocal lattice vectors G1 = (2⇡/a, 0) and G2 = (0, 2⇡/a).
In Fig. 1.6(a) we see some specific points in the reciprocal space: � = (0, 0), X = (⇡/a, 0),
M = (⇡/a, ⇡/a). The lines � = (kx, 0) and ⌃ = (kx, kx) make connections between them. The
points M and X lie at the first Brillouin zone boundary [dotted line in Fig. 1.6(a)].

The dispersion curve in a free space is a light cone. Now we add a periodic perturbation
as depicted in Fig. 1.6(a) with an infinitesimal dielectric contrast between the rods and the
surrounding space. This makes the cone fold into the first Brillouin zone due to the Bloch
theorem. In Fig. 1.6(b) we show the projections of this folded cone in the directions ⌃ and
�. The photonic states on the dispersion curves are degenerated at symmetric points (�, X,
M). Some lines conserve their linear character and they will slightly curve when we increase
the contrast between the rods and the surrounding medium: this will (at least partly) lift the
degeneracy. Note, however, that some curves are not linear and they are quite flat even in the
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Figure 1.6: (a) Unit cell of a structure consisting of a square array of dielectric rods and
the corresponding lattice in the reciprocal space. (b) Dispersion curves in the limit of
an infinitesimal contrast between the rods and the surrounding space. The dispersion
curves of electromagnetic radiation in a free space are just folded into the first Brillouin
zone, see text for more details. MM: zone where the metamaterial behavior is expected
if the elements of the photonic structure are individually resonant, CP: zone where the
composite behavior is expected.

limit of zero contrast (e.g. �0, ⌃0). Their origin is depicted in Fig. 1.6(a) by dashed lines; such
lines do not pass through the origin of the reciprocal space. For example the dispersion of �0 is
written as:

!

c
=

p
k2
x + (2⇡/a)2 (1.34)

and the dispersion of ⌃0 reads:

!

c
=

p
k2
x + (2⇡/a � kx)2 . (1.35)

As pointed out in the previous paragraph, these “flat” dispersion curves have a high density
of states and low group velocity of propagation, i.e. features which are often exploited in the
photonic crystals.

In Fig. 1.7 we show the dispersion curves calculated for a 2D photonic crystal composed of
a medium with dielectric permittivity of 2.1 with cylindrical holes drilled into it (the figure is
reproduced from [K. Sakoda, Optical Properties of Photonic Crystals, Springer Berlin 2001]).
The various letters denoting the branches describe the symmetry of the modes and will be
explained later in this textbook. The curves are directly comparable to those shown in Fig.
1.6(b). We observe the results of the coupling between the modes: the degeneracy is lifted in
some cases and dispersion curves show anti-crossing behavior at some points; the similarity with
Fig. 1.6(b) is quite apparent.

Fig. 1.8 shows an example of the transmission spectrum of a slab composed of this photonic
crystal. The observed features directly correspond to the band structure along the �-X direction
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Figure 1.7: Dispersion relation of a 2D square lattice composed of dielectric material
with " = 2.1 with cylindrical holes drilled into it. E-polarization (electric field parallel
to the rods and magnetic field in the plane); r/a = 0.28. Following [K. Sakoda, Optical
Properties of Photonic Crystals, Springer Berlin 2001, p. 56].

in Fig. 1.7. The interference patterns observed in the frequency ranges (0.1–0.3) and (0.45–0.65)
correspond to the linear parts of the lowest dispersion curves denoted as A. We observe here
Fabry-Pérot like multiple reflections giving rise to interference maxima and minima. It means
that here an e↵ective refractive index can be defined for this particular direction of propagation
corresponding to the slope of the dispersion curves. The frequency separation of individual
maxima then corresponds to the density of states in a quasi-linear part of the dispersion curve.
The first band gap opens between 0.35 and 0.4 (BZ boundary) and the second between 0.7 and
0.73 (BZ center). In the next part the spectrum features a very flat dispersion curve with a
small group velocity and a high density of states (cf. very dense interference pattern in the
spectrum between 0.73 and 0.8). A more complex spectrum at even higher frequencies is related
to a higher complexity of the band structure (crossing bands, various small gaps etc.).

Figure 1.8: Transmission spectrum of a slab consisting of a photonic crystal composed
of dielectric material with " = 2.1 with cylindrical holes drilled in a 2D square lattice.
Normal incidence, electric field polarized along the rods and propagation along the �-X
direction. The corresponding band structure is shown in Fig. 1.7. Following [K. Sakoda,
Optical Properties of Photonic Crystals, Springer Berlin 2001, p. 91].
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