Nacházíte se

Machine learning for QFT

Středa, 29.01.2020 14:00

Přednášející: Harold Erbin (University of Turin)
Místo: seminární místnost č. 226, Fyzikální ústav AV ČR, Na Slovance 2, Praha 8
Jazyk: Angličtina
Pořadatelé: Oddělení teorie částic a kosmologie
Abstrakt: Machine learning has revolutionized most fields it has penetrated, and the range of its applications is growing rapidly. The last years has seen efforts towards bringing the tools of machine learning to lattice QFT. After giving a general idea of what is machine learning, I will present two recent results on lattice QFT: 1) computing the Casimir energy for a 3d QFT with arbitrary Dirichlet boundary conditions, 2) predicting the critical temperature of the confinement phase transition in 2+1 QED at different lattice sizes.