Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10^18 eV


Cosmic rays are high-energy particles arriving from space; some have energies far beyond those that human-made particle accelerators can achieve. The sources of higher-energy cosmic rays remain under debate, although we know that lower-energy cosmic rays come from the solar wind. The Pierre Auger Collaboration reports the observation of thousands of cosmic rays with ultrahigh energies of several exa–electron volts (about a Joule per particle), arriving in a slightly dipolar distribution (see the Perspective by Gallagher and Halzen). The direction of the rays indicates that the particles originated in other galaxies and not from nearby sources within our own Milky Way Galaxy.

Department 16_Astrocasticove fyziky_5_VyznamnyVysledek-Anizotropie.png
Sky map in galactic coordinates showing the cosmic-ray flux for E ≥ 8 EeV smoothed with a 45° top-hat function. The galactic center is at the origin. The cross indicates the measured dipole direction; the contours denote the 68% and 95% confidence level regions. The dipole in the 2MRS galaxy distribution is indicated. Arrows show the deflections expected for a particular model of the galactic magnetic field (JF12) on particles with E/Z = 5 or 2 EeV.