Clarifying quantum limits in biomolecules by utilizing entangled photons generated from protein bound cofactor modeled on orange carotenoid protein


Searching for quantum effects in biology is a grand topic of biophysics. On one hand, there are suggestions for quantum effects on such a macroscopic scale as a human brain; on the other hand, there are heated disputes over tiny localized intramolecular processes in proteins. Quantum physics is the basis of all molecules, however, are there some unusual quantum properties hidden in the operation of large biomolecules? There are experimental implications that certain quantum effects such as charge or exciton delocalization can indeed be purposely enhanced by the protein environment. Those are e.g. unusually long-lasting coherences observed by 2D spectroscopy in light-harvesting antennas of plants. Unfortunately, it has turned out that it is difficult to assess if the observed oscillations are genuine quantum effects. It seems that for assessing how “quantum” the nature of any molecular process is, we are missing “Occam’s razor” techniques. Here I propose that utilizing the deep connection between quantum decoherence and the entanglement collapse might provide such a tool.