Oxide Thermoelectric Materials for High Temperature Waste Heat Recovery (OXTEM)


Direct thermal to electric power generation represents a very prospective method for recovery of the high temperature waste heat. In this context the development of chemically stable and efficient thermoelectric ceramics, composed of nontoxic and price affordable elements, has a key role for extensive application of thermoelectric materials. The project is thus aims to investigate and characterize oxide materials, which form efficient thermoelectric unicouple. The targeted materials are principally derived from layered oxide cobaltates (as p-type legs) and Mn-based perovskites or ZnO (as n-type legs). Apart of the standard thermoelectric requirements for relevant materials, namely the low thermal conductivity, the special care will be focused, given the intense thermal strain and oxidation-reduction conditions at high temperatures, on the functionalization of thermal and electrical interfaces. In this respect we plan to utilize conducting oxide nanotubes, which are able to release mechanical stresses.