Force and conductance in molecular junctions

Abstract

This project will study, through the combination of theory and experiment, the fundamental relationship between structural and mechanical processes and conductance in single molecule junctions. First principles theoretical methods based on DFT will be used to explore mechanical process at nanojunctions and the effect of these processes on conductance. Such processes include ring rotation in conjugated molecules or bond stretching and breaking. Theoretical transport methods will be extended to calculate the conductance of a large number of junctions. At the same time, experiments using non-contact AFM/STM methods will simultaneously measure force and conductance. The project will focus on conjugated molecules and will explore metal-molecule chemical linkers. In particular, the project will study the controlled lifting and stretching of molecules. Through this complementary approach combining theory and experiment, we hope to achieve a detailed understanding of the detailed interplay between mechanical and conducting properties of single molecule junctions.