You are here

Domain wall contribution to lattice dynamics and permittivity of BiFeO3

Ferroelectric materials are known for their exceptionally high dielectric permittivity. It turns out, that important part of it originates from a material's complicated microstructure and in particular from interfaces between ferroelectric domains. In this study we investigate different types of interfaces in a multiferroic BiFeO3. By means of atomistic modelling we show that some configurations of interfaces can greatly enhance the permittivity by hosting terahertz-range collective polar fluctuations. The key result is that the permittivity is modified in the THz range. This fundamental finding and its understanding can be used in a design of new materials [ J. Hlinka, M. Pasciak, S. Körbel, and P. Márton, Phys. Rev. Lett. 119, 057604 (2017)].

Figure: Change of the (polar-active) phonon spectrum due to presence of dense domain-interface structure of BiFeO3 (right panel) in comparison with the single-domain case (left panel). Additional low-frequency Γ-point mode (labelled A) is responsible for 25x enhancement of permittivity in the domain engineered material.