Lecture 9: Birefringent optical elements

Petr Kužel

- Polarizers
- Phase retarders
- Applications: Jones matrices
- Optical activity

Basics

Birefringent optical elements:
Plates or prisms which can change the polarization state of a beam in a welldefined way

Calcite $\left(\mathrm{CaCO}_{3}\right)$:

$$
n_{o}=1.662, \quad n_{e}=1.488
$$

large birefringence $\left(n_{e}-n_{o}=-0.174\right)$: polarizers
Quartz $\left(\mathrm{SiO}_{2}\right)$:

$$
n_{o}=1.546, \quad n_{e}=1.555
$$

smaller birefringence ($n_{e}-n_{o}=+0.009$): phase retarders

Polarizers

couple of prisms (working on the total reflection principle) separated by

- Canadian balm ($n=1.54$)
- Air layer

Dichroic (sheet) polarizers

- Different absoption coefficient for both polarization

Examples of polarizers

Name	normal surface	polarizer layout	comment
Glan-Thompson	$\rightarrow \circlearrowleft$	$\xrightarrow{\sim} \stackrel{\ominus}{\square}$	- Large range of incidence angles ($\sim 20^{\circ}$)
Glan-Taylor	$\rightarrow\left(\begin{array}{c} i \\ i \\ \vdots \\ i \end{array}\right.$		- Small range of incidence angles ($\approx 5^{\circ}$) - Brewster angle incidence - Possible use: UV, high power
Rochon			- Separation of the O and E beams (typically 10°)
Wollaston			- Symmetric separation of the O et E beams (typically 20°)

Optical elements: Jones matrices

$$
\boldsymbol{J}_{1}=\boldsymbol{M} \cdot \boldsymbol{J}_{0}
$$

Jones matrices of polarizers

$$
\begin{gathered}
\boldsymbol{P}_{x}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
\mathbf{P}_{y}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\mathbf{P}_{\psi}=\left(\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \psi & \sin \psi \\
-\sin \psi & \cos \psi
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} \psi & \sin \psi \cos \psi \\
\sin \psi \cos \psi & \sin ^{2} \psi
\end{array}\right)
\end{gathered}
$$

Parallel and perpendicular polarizations:

$$
\left(\begin{array}{ll}
c^{2} & s c \\
s c & s^{2}
\end{array}\right)\binom{c}{s}=\binom{c}{s} \quad\left(\begin{array}{ll}
c^{2} & s c \\
s c & s^{2}
\end{array}\right)\binom{-s}{c}=\binom{0}{0}
$$

Crossed polarizers (angles φ et $\varphi+\pi / 2$):

$$
\left(\begin{array}{ll}
c^{2} & s c \\
s c & s^{2}
\end{array}\right)\left(\begin{array}{cc}
s^{2} & -s c \\
-s c & c^{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Jones matrices of polarizers

Sequence of 3 polarizers (φ-polarizer between two crossed polarizers):

If this sequence is applied on a linearly polarized beam:

$$
\left(\begin{array}{cc}
0 & c s \\
0 & 0
\end{array}\right)\binom{0}{1}=\binom{c s}{0}
$$

Maximum transmission for $\varphi=\pi / 4$, no transmission for $\varphi=0, \pi / 2$

Phase retardation plates

Phase retardation (due to different optical path) for 2 orthogonal linear polarizations:

$$
\Delta \varphi=\frac{2 \pi\left(n_{e}-n_{e}\right) d}{\lambda}
$$

Example: for a quarter-wave plate ($\Delta \varphi=\pi / 2$) we need:

$$
d=15.2 \mu \mathrm{~m} \text { pour } \lambda=546.1 \mathrm{~nm}
$$

- higher order thick plates $(\Delta \varphi=5 \pi / 2,9 \pi / 2 \ldots)$
- 2 plates in optical contact with mutually perpendicular orientation and with a slightly different thickness

$$
\Delta \varphi=\Delta \varphi_{1}-\Delta \varphi_{2}=\frac{2 \pi\left(n_{e}-n_{o}\right)\left(d_{1}-d_{2}\right)}{\lambda}
$$

Compensator

Babinet-Soleil:

Berek:

Jones matrices of phase retarders

$$
\begin{aligned}
& \left(\begin{array}{cc}
e^{i \delta} & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)\left(\begin{array}{cc}
e^{i \delta} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)=\left(\begin{array}{ll}
c^{2} e^{i \delta}+s^{2} & c s\left(1-e^{i \delta}\right) \\
c s\left(1-e^{i \delta}\right) & s^{2} e^{i \delta}+c^{2}
\end{array}\right)
\end{aligned}
$$

Phase retardation plate between 2 polarizers:

$$
\left(\begin{array}{cc}
s^{2} & -s c \\
-s c & c^{2}
\end{array}\right)\left(\begin{array}{cc}
e^{i \delta} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
c^{2} & s c \\
s c & s^{2}
\end{array}\right)
$$

The light does not pass for $\varphi=0, \pi / 2$
Maximum transmission for $\varphi=\pi / 4$ (optical axis of the plate shows 45° with respect to the polarizing directions)

Modulator: phase retarder between 2 polarizers

Optical axis of the plate shows 45° with respect to the polarizing directions

$$
\left(\begin{array}{cc}
s^{2} & -s c \\
-s c & c^{2}
\end{array}\right)\left(\begin{array}{cc}
e^{i \delta} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
c^{2} & s c \\
s c & s^{2}
\end{array}\right)\binom{c}{s}=c s\binom{s\left(e^{i \delta}-1\right)}{c\left(1-e^{i \delta}\right)}=\frac{\sqrt{2}}{4}\binom{e^{i \delta}-1}{1-e^{i \delta}}
$$

Transmitted light intensity:

$$
I=\frac{1}{8}\left(\left(e^{i \delta}-1\right)\left(e^{-i \delta}-1\right)+\left(1-e^{i \delta}\right)\left(1-e^{-i \delta}\right)\right)=\frac{1}{2}(1-\cos \delta)
$$

The dephasing δ can have 2 parts

- a large one which is constant (close to $\delta_{0}=\pi / 2$ - quarter-wave plate)
- a small one which is variable ($\delta_{1}=\Gamma \sin \omega_{m} t, \Gamma \ll 1$):

$$
I=\frac{1}{2}\left(1-\cos \left(\delta_{0}+\delta_{1}\right)\right)=\frac{1}{2}\left(1+\sin \left(\Gamma \sin \omega_{m} t\right)\right) \approx \frac{1}{2}\left(1+\Gamma \sin \omega_{m} t\right)
$$

