
Lecture 12: Introduction to
nonlinear optics II.

Petr Kužel
Propagation of strong optic signals (proper nonlinear effects)

• Second order effects
! Three-wave mixing

Phase matching condition
! Second harmonic generation
! Sum frequency generation
! Parametric generation

• Third order effects
! Four-wave mixing
! Optical Kerr effect



Nonlinear polarization
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Intrinsic symmetry: ikjijk χ=χ

For symmetric tensors Voigt notation can be introduced:
indices (ij) 11 22 33 23 or 32 13 or 31 12 or 21

contraction (l) 1 2 3 4 5 6

A 3×6 matrix χil is introduced, 
where l = 1…6 is a contracted index,
and i =1…3. 
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Three-wave mixing
Coupling between two optical waves ω1 and ω2:
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The total field:
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Linear part of the polarization PL:

( ) ( )( )ttL
21 )()( 210

ωω ωχ+ωχε= EEP

Nonlinear part of the polarization PNL:

( )(
( ) )..)()()(2

2
4
1

22112121

2121222111 22)2()2(

cce

eee

ti

tititi
NL

++++

++χ=χ=

∗ωω∗ωωω−ω∗ωω

ω+ωωωωωωωωω

EEEEEE

EEEEEEEEP



Nonlinear polarization for three
wave mixing
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If we take into account the dispersion, the susceptibility is weighted: χ(2)(ω1, ω2)

The polarization PNL, when introduced into the Maxwell equations, becomes
the source of the radiation at frequencies 2ω1, 2ω2, ω1 + ω2 et ω1 − ω2

It causes an energy transfer between the fundamental and the mixed spectral
components

Three wave mixing: two initial components (ω1 and ω2) give raise to a third
one (ω3)

A phase matching condition has to be fulfilled : at most one efficient energy
transfer channel is in general possible



Second harmonic generation (SHG)
Coupling between ω and 2ω — other spectral components are omitted:
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The wave equation in the time domain then reads:
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Absorption can be taken into account in ε; however, we neglect it here

The waves are supposed to propagate along z; their amplitudes do not
depend on x and y.



SHG: continued
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The energy transfer between the two waves is assumed to be very small in
the scale of the wavelength:
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Coupled wave equations:
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Coupled-wave equations

The wave equations without coupling define the wave vectors k1 and k2:
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We finally obtain:
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Constant field approximation
The fundamental wave is supposed not to be depleted:
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SHG solution
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Character of the solution depends critically on the value of ∆k
0≠∆k

Both waves do not propagate with the same phase velocity: they are not
constantly in phase, but become periodically out-of-phase. This leads to
a modulation of I2ω with the period (called coherence length):
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Typically: n2ω − nω ≈ 10−2, lc  ≈ 100 µm. This is the maximum crystal
length that can efficiently participate to SHG.



Phase matching condition
12 20 kkk =⇒=∆ ωω = nn2
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All the crystal length participates efficiently to the generation
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How to achieve the phase matching
condition:

• Compensation of the birefringence
and the dispersion

OO-E interaction
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Phase matching condition:
continued

EO-E interaction:
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z (optical axis)
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ne,ω(θ)The choice of the polarizations
depends on the available coeffi-
cients of χijk (e.g. χ111 couples only
parallel polarizations and thus can
never allow the phase matching)



Three-wave mixing: summary
General equations of three-wave mixing

0321 =ω±ω±ω
0321 =±± kkk

(frequency transformation)
(phase matching condition)

Sum and difference frequency generation (SFD, DFD):
•Input: two strong beams ω1 and ω2

•Output: strong beam ω3

321 ω=ω±ω
321 kkk =±

213 ω=ω−ω

213 kkk =−

321 ω=ω+ω
321 kkk =+

Parametric generation (amplification of weak beams):
•Input:  strong ω3  + weak ω1

•Output: medium ω2 + medium ω1

Up-conversion
•Input: strong ω1 + weak ω2

•Output: weak ω3



Four-wave mixing
Third order effect:
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Required conditions for the wavelength transformation:
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Degenerated cases are frequently used

Transient grating experiments



Propagation in Kerr-like media
Degenerated case (one very strong optical beam):
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Indices are omitted (i.e. the beam is linearly polarized and it is an
eigenmode of the medium

The beam propagated along z:
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Wave equation:
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Linear wave equation:
 definition of k Nonlinear polarization



Propagation in Kerr media:
continued
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Remaining terms in the wave equation

if χ(3) is real then

zikeAzA
n

iAA 1
0

2
0

)3(
0

0 2
3exp −=




 χωη−= ( ) ( ) ( )zkkztiezAtzE 1, −−ωω =

The wave vector is renormalized:
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The effective refractive index depends on the intensity of the beam:



Propagation in Kerr media
Self-phase modulation (ultrashort pulses)

refractive index is time dependent

phase of the pulse is modulation

creation of new frequency components (bandwidth broadening)

pulse shortening

Self-focusation (intense beams)

Kerr lensing due to spatial profile of the beam
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