Lecture 12: Introduction to nonlinear optics II.

Petr Kužel

Propagation of strong optic signals (proper nonlinear effects)

- Second order effects

Three-wave mixing Phase matching condition
Second harmonic generation
(5) Sum frequency generation
(5) Parametric generation

- Third order effects

Four-wave mixing
Optical Kerr effect

Nonlinear polarization

$$
P_{i}(\omega)=\varepsilon_{0} \chi_{i j}(\omega) E_{j}(\omega)+\int d \omega_{1} \underbrace{\chi_{i j k}^{(2)}\left(\omega ; \omega_{1}, \omega_{2}\right) E_{j}\left(\omega_{1}\right) E_{k}\left(\omega_{2}\right)}_{\omega=\omega_{1}+\omega_{2}}+\ldots
$$

$$
P_{i}=\varepsilon_{0} \chi_{i j} E_{j}+\chi_{i j k}^{(2)} E_{j} E_{k}+\ldots
$$

Intrinsic symmetry: $\quad \chi_{i j k}=\chi_{i k j}$
For symmetric tensors Voigt notation can be introduced:

indices $(i j)$	11	22	33	23 or 32	13 or 31	12 or 21
contraction (l)	1	2	3	4	5	6

A 3×6 matrix $\chi_{i l}$ is introduced, where $l=1 \ldots 6$ is a contracted index, and $i=1 \ldots 3$.

$$
\chi_{i l}=\left(\begin{array}{llllll}
\chi_{11} & \chi_{12} & \chi_{13} & \chi_{14} & \chi_{15} & \chi_{16} \\
\chi_{21} & \chi_{22} & \chi_{23} & \chi_{24} & \chi_{25} & \chi_{26} \\
\chi_{31} & \chi_{32} & \chi_{33} & \chi_{34} & \chi_{35} & \chi_{36}
\end{array}\right)
$$

Three-wave mixing

Coupling between two optical waves ω_{1} and ω_{2} :

$$
\begin{aligned}
& \boldsymbol{E}^{\omega_{1}}(t)=\operatorname{Re}\left\{\boldsymbol{E}^{\omega_{1}} e^{i \omega_{1} t}\right\}=\frac{1}{2}\left(\boldsymbol{E}^{\omega_{1}} e^{i \omega_{1} t}+\left(\boldsymbol{E}^{\omega_{1}}\right)^{*} e^{-i \boldsymbol{\omega}_{\omega_{1}} t}\right)=\frac{1}{2}\left(\boldsymbol{E}^{\omega_{1}} e^{i \omega_{1} t}+c . c .\right) \\
& \boldsymbol{E}^{\omega_{2}}(t)=\operatorname{Re}\left\{\boldsymbol{E}^{\omega_{2}} e^{i \omega_{2} t}\right\}=\frac{1}{2}\left(\boldsymbol{E}^{\omega_{2}} e^{i \omega_{2} t}+\left(\boldsymbol{E}^{\omega_{2}}\right)^{*} e^{-i \omega_{2} t}\right)=\frac{1}{2}\left(\boldsymbol{E}^{\omega_{2}} e^{i \omega_{2} t}+c . c .\right)
\end{aligned}
$$

The total field:

$$
\boldsymbol{E}=\boldsymbol{E}^{\omega_{1}}(t)+\boldsymbol{E}^{\omega_{2}}(t)=\frac{1}{2}\left(\boldsymbol{E}^{\omega_{1}} e^{i \omega_{1} t}+\boldsymbol{E}^{\omega_{2}} e^{i \omega_{2} t}+c . c .\right)
$$

Linear part of the polarization \boldsymbol{P}_{L} :

$$
\boldsymbol{P}_{L}=\varepsilon_{0}\left(\chi\left(\omega_{1}\right) \boldsymbol{E}^{\omega_{1}}(t)+\chi\left(\omega_{2}\right) \boldsymbol{E}^{\omega_{2}}(t)\right)
$$

Nonlinear part of the polarization $\boldsymbol{P}_{N L}$:

$$
\begin{aligned}
\boldsymbol{P}_{N L}=\chi^{(2)} \boldsymbol{E} \boldsymbol{E} & =\frac{1}{4} \chi^{(2)}\left(\boldsymbol{E}^{\omega_{1}} \boldsymbol{E}^{\omega_{1}} e^{2 i \omega_{1} t}+\boldsymbol{E}^{\omega_{2}} \boldsymbol{E}^{\omega_{2}} e^{2 \omega_{2} t}+2 \boldsymbol{E}^{\omega_{1}} \boldsymbol{E}^{\omega_{2}} e^{i\left(\omega_{1}+\omega_{2}\right) t}\right. \\
& \left.+2 \boldsymbol{E}^{\omega_{1}}\left(\boldsymbol{E}^{\omega_{2}}\right)^{*} e^{i\left(\omega_{1}-\omega_{2}\right) t}+\boldsymbol{E}^{\omega_{1}}\left(\boldsymbol{E}^{\omega_{1}}\right)^{*}+\boldsymbol{E}^{\omega_{2}}\left(\boldsymbol{E}^{\omega_{2}}\right)^{*}+c . c .\right)
\end{aligned}
$$

Nonlinear polarization for three wave mixing
 $$
\begin{aligned} \boldsymbol{P}_{N L}=\chi^{(2)} \boldsymbol{E} \boldsymbol{E} & =\frac{1}{4} \chi^{(2)}\left(\boldsymbol{E}^{\omega_{1}} \boldsymbol{E}^{\omega_{1}} e^{2 i \omega_{1} t}+\boldsymbol{E}^{\omega_{2}} \boldsymbol{E}^{\omega_{2}} e^{2 i \omega_{2} t}+2 \boldsymbol{E}^{\omega_{1}} \boldsymbol{E}^{\omega_{2}} e^{i\left(\omega_{1}+\omega_{2}\right) t}\right. \\ & \left.+2 \boldsymbol{E}^{\omega_{1}}\left(\boldsymbol{E}^{\omega_{2}}\right)^{*} e^{i\left(\omega_{1}-\omega_{2}\right) t}+\boldsymbol{E}^{\omega_{1}}\left(\boldsymbol{E}^{\omega_{1}}\right)^{*}+\boldsymbol{E}^{\omega_{2}}\left(\boldsymbol{E}^{\omega_{2}}\right)^{*}+c . c .\right) \end{aligned}
$$

If we take into account the dispersion, the susceptibility is weighted: $\chi^{(2)}\left(\omega_{1}, \omega_{2}\right)$
The polarization $\boldsymbol{P}_{N L}$, when introduced into the Maxwell equations, becomes the source of the radiation at frequencies $2 \omega_{1}, 2 \omega_{2}, \omega_{1}+\omega_{2}$ et $\omega_{1}-\omega_{2}$

It causes an energy transfer between the fundamental and the mixed spectral components

Three wave mixing: two initial components (ω_{1} and ω_{2}) give raise to a third one $\left(\omega_{3}\right)$

A phase matching condition has to be fulfilled : at most one efficient energy transfer channel is in general possible

Second harmonic generation (SHG)

Coupling between ω and 2ω - other spectral components are omitted:

$$
\begin{aligned}
& \boldsymbol{E}=\boldsymbol{E}^{\omega}(t)+\boldsymbol{E}^{2 \omega}(t)=\frac{1}{2}\left(\boldsymbol{E}^{\omega} e^{i \omega t}+\boldsymbol{E}^{2 \omega} e^{i 2 \omega t}+c . c .\right) \\
& P_{i, N L}^{\omega}=\frac{1}{2} \chi_{i j k}^{(2)}\left(E_{j}^{2 \omega}\left(E_{k}^{\omega}\right)^{*} e^{i \omega t}+c . c .\right) \\
& P_{i, N L}^{2 \omega}=\frac{1}{4} \chi_{i j k}^{(2)}\left(E_{j}^{\omega} E_{k}^{\omega} e^{2 i \omega t}+c . c .\right)
\end{aligned}
$$

The wave equation in the time domain then reads:

$$
\nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}+\mu_{0} \frac{\partial^{2} \boldsymbol{P}_{N L}}{\partial t^{2}}
$$

Absorption can be taken into account in ε; however, we neglect it here The waves are supposed to propagate along z; their amplitudes do not depend on x and y.

SHG: continued

$$
E_{j}^{\omega}(z, t)=\frac{1}{2}\left(E_{j}^{\omega}(z) e^{i\left(\omega t-k_{1} z\right)}+c . c .\right) \quad E_{j}^{2 \omega}(z, t)=\frac{1}{2}\left(E_{j}^{2 \omega}(z) e^{i\left(2 \omega t-k_{2} z\right)}+c . c .\right)
$$

The energy transfer between the two waves is assumed to be very small in the scale of the wavelength:

$$
\frac{d E_{j}^{\omega}}{d z} k_{1} \gg \frac{d^{2} E_{j}^{\omega}}{d z^{2}} \quad \frac{d E_{j}^{2 \omega}}{d z} k_{2} \gg \frac{d^{2} E_{j}^{2 \omega}}{d z^{2}}
$$

Coupled wave equations:

$$
\begin{aligned}
& \left(\left(\omega^{2} n_{\omega}^{2} / c^{2}-k_{1}^{2}\right) \frac{E_{j}^{\omega}}{2}-i k_{1} \frac{d E_{j}^{\omega}}{d z}\right) e^{i\left(\omega t-k_{1} z\right)}+c . c .=\mu_{0} \frac{\partial^{2} P_{j, N L}^{\omega}}{\partial t^{2}} \\
& \left(\left((2 \omega)^{2} n_{2 \omega}^{2} / c^{2}-k_{2}^{2}\right) \frac{E_{j}^{2 \omega}}{2}-i k_{2} \frac{d E_{j}^{2 \omega}}{d z}\right) e^{i\left(2 \omega t-k_{2} z\right)}+c . c .=\mu_{0} \frac{\partial^{2} P_{j, N L}^{2 \omega}}{\partial t^{2}}
\end{aligned}
$$

Coupled-wave equations

$$
\begin{aligned}
& \left(\left(\omega^{2} n_{\omega}^{2} / c^{2}-k_{1}^{2}\right) \frac{E_{j}^{\omega}}{2}-i k_{1} \frac{d E_{j}^{\omega}}{d z}\right) e^{i\left(\omega t-k_{1} z\right)}+c . c .=\mu_{0} \frac{\partial^{2} P_{j, N L}^{\omega}}{\partial t^{2}} \\
& \left(\left((2 \omega)^{2} n_{2 \omega}^{2} / c^{2}-k_{2}^{2}\right) \frac{E_{j}^{2 \omega}}{2}-i k_{2} \frac{d E_{j}^{2 \omega}}{d z}\right) e^{i\left(2 \omega t-k_{2} z\right)}+c . c .=\mu_{0} \frac{\partial^{2} P_{j, N L}^{2 \omega}}{\partial t^{2}}
\end{aligned}
$$

The wave equations without coupling define the wave vectors k_{1} and k_{2} :

$$
\omega^{2} n_{\omega}^{2} / c^{2}-k_{1}^{2}=0 \quad(2 \omega)^{2} n_{2 \omega}^{2} / c^{2}-k_{2}^{2}=0
$$

We finally obtain:

$$
\begin{aligned}
\frac{d E_{j}^{\omega}}{d z} & =-\frac{i \omega \eta_{0}}{2 n_{\omega}} \chi_{j k l}^{(2)} E_{k}^{2 \omega}\left(E_{l}^{\omega}\right)^{*} e^{-i\left(k_{2}-2 k_{1}\right) z} \\
\frac{d E_{j}^{2 \omega}}{d z} & =-\frac{i \omega \eta_{0}}{2 n_{2 \omega}} \chi_{j k l}^{(2)} E_{k}^{\omega} E_{l}^{\omega} e^{-i\left(2 k_{1}-k_{2}\right) z}
\end{aligned}
$$

Constant field approximation

The fundamental wave is supposed not to be depleted:

$$
\frac{d E_{j}^{2 \omega}}{d z}=-\frac{i \omega \eta_{0}}{2 n_{2 \omega}} \chi_{j k l}^{(2)} E_{k}^{\omega} E_{l}^{\omega} e^{-i\left(2 k_{1}-k_{2}\right) z}
$$

Solution:

$$
E_{j}^{2 \omega}(z)=B-A e^{i \Delta k z}
$$

with

$$
\begin{aligned}
& \Delta k=k_{2}-2 k_{1} \\
& A=\frac{\omega \eta_{0} \chi_{j k l}^{(2)} E_{k}^{\omega} E_{l}^{\omega}}{2 n_{2 \omega} \Delta k}
\end{aligned}
$$

B determined from the boundary condition: $\quad E_{j}^{2 \omega}(z=0)=0$

SHG solution

$$
\begin{aligned}
& E_{j}^{2 \omega}(L)=\frac{\omega \eta_{0}}{2 n_{2 \omega}} \frac{1-e^{i \Delta k L}}{\Delta k} \chi_{j k l}^{(2)} E_{k}^{\omega} E_{l}^{\omega} \\
& I_{2 \omega}=\frac{n_{2 \omega}}{2 \eta_{0}}\left|E_{j}^{2 \omega}(L)\right|^{2}=\frac{1}{2} \eta_{0}^{3} \frac{\omega^{2}\left(\chi_{e f f}^{(2)}\right)^{2} L^{2}}{n_{2 \omega}^{2}} I_{\omega}^{2} \frac{\sin ^{2}\left(\frac{1}{2} \Delta k L\right)}{\left(\frac{1}{2} \Delta k L\right)^{2}}
\end{aligned}
$$

Character of the solution depends critically on the value of Δk

$$
\Delta k \neq 0
$$

Both waves do not propagate with the same phase velocity: they are not constantly in phase, but become periodically out-of-phase. This leads to a modulation of $I_{2 \omega}$ with the period (called coherence length):

$$
l_{c}=\frac{2 \pi}{\Delta k}=\frac{2 \pi}{k_{2}-2 k_{1}}=\frac{\lambda}{2\left(n_{2 \omega}-n_{\omega}\right)}
$$

Typically: $n_{2 \omega}-n_{\omega} \approx 10^{-2}, l_{c} \approx 100 \mu \mathrm{~m}$. This is the maximum crystal length that can efficiently participate to SHG.

Phase matching condition

$$
\begin{array}{ll}
\Delta k=0 \Rightarrow \quad k_{2}=2 k_{1} & n_{2 \omega}=n_{\omega} \\
I_{2 \omega}=\frac{1}{2} \eta_{0}^{3} \frac{\omega^{2}\left(\chi_{e f f}^{(2)}\right)^{2}}{n_{2 \omega} n_{\omega}^{2}} I_{\omega}^{2} L^{2}
\end{array}
$$

All the crystal length participates efficiently to the generation
How to achieve the phase matching condition:

- Compensation of the birefringence and the dispersion

OO-E interaction

$$
\begin{aligned}
& n_{e, 2 \omega}(\theta)=n_{o, \omega} \\
& \sin ^{2} \theta=\frac{n_{o, \omega}^{-2}-n_{o, 2 \omega}^{-2}}{n_{e, 2 \omega}^{-2}-n_{o, 2 \omega}^{-2}}
\end{aligned}
$$

Phase matching condition: continued

EO-E interaction:

$$
\Delta k=0 \Rightarrow \quad k_{2 \omega, e}=k_{\omega, o}+k_{\omega, e}
$$

$$
n_{e, 2 \omega}(\theta)=\frac{1}{2}\left(n_{o, \omega}+n_{e, \omega}(\theta)\right)
$$

The choice of the polarizations depends on the available coefficients of $\chi_{i j k}$ (e.g. χ_{111} couples only parallel polarizations and thus can never allow the phase matching)

Three-wave mixing: summary

General equations of three-wave mixing
$\omega_{1} \pm \omega_{2} \pm \omega_{3}=0 \quad$ (frequency transformation)
$\boldsymbol{k}_{1} \pm \boldsymbol{k}_{2} \pm \boldsymbol{k}_{3}=0 \quad$ (phase matching condition)
Sum and difference frequency generation (SFD, DFD):
-Input: two strong beams ω_{1} and ω_{2}

$$
\begin{gathered}
\omega_{1} \pm \omega_{2}=\omega_{3} \\
k_{1} \pm \boldsymbol{k}_{2}=\boldsymbol{k}_{3}
\end{gathered}
$$

Parametric generation (amplification of weak beams):
-Input: strong $\omega_{3}+$ weak ω_{1}
$\omega_{3}-\omega_{1}=\omega_{2}$

- Output: medium $\omega_{2}+$ medium ω_{1}

$$
k_{3}-k_{1}=k_{2}
$$

Up-conversion
-Input: strong $\omega_{1}+$ weak ω_{2}

- Output: weak ω_{3}

$$
\begin{gathered}
\omega_{1}+\omega_{2}=\omega_{3} \\
k_{1}+\boldsymbol{k}_{2}=\boldsymbol{k}_{3}
\end{gathered}
$$

Four-wave mixing

Third order effect:

$$
\boldsymbol{P}_{N L}^{\omega_{4}}=\chi_{i j k l}^{(3)} E_{j}^{\omega_{1}} E_{k}^{\omega_{2}} E_{l}^{\omega_{3}}
$$

Required conditions for the wavelength transformation:

$$
\begin{aligned}
& \omega_{4}=\omega_{1}+\omega_{2}+\omega_{3} \\
& \boldsymbol{k}_{4}=\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}
\end{aligned} \quad \text { or } \quad \begin{aligned}
& \omega_{4}+\omega_{3}=\omega_{1}+\omega_{2} \\
& \boldsymbol{k}_{4}+\boldsymbol{k}_{3}=\boldsymbol{k}_{1}+\boldsymbol{k}_{2}
\end{aligned}
$$

Degenerated cases are frequently used
Transient grating experiments

Propagation in Kerr-like media

Degenerated case (one very strong optical beam):

$$
\boldsymbol{P}_{N L}^{\omega}=3 \chi^{(3)} E^{\omega} E^{\omega}\left(E^{\omega}\right)^{*}
$$

Indices are omitted (i.e. the beam is linearly polarized and it is an eigenmode of the medium

The beam propagated along z :

$$
E^{\omega}(z, t)=A(z) e^{i(\omega t-k z)}
$$

Wave equation:

$$
\begin{aligned}
& \left(\left(\omega^{2} n^{2} / c^{2}-k^{2}\right) A-2 i k \frac{d A}{d z}\right) e^{i(\omega t-k z)}=-3 \mu_{0} \omega^{2} \chi^{(3)} A^{2} A^{*} e^{i(\omega t-k z)} \\
& \text { Nonlinear polarization } \\
& \text { ear wave equation: } \\
& \text { definition of } k
\end{aligned}
$$

Propagation in Kerr media:
 continued

Remaining terms in the wave equation
if $\chi^{(3)}$ is real then

$$
A=A_{0} \exp \left(-i \frac{3 \eta_{0} \omega \chi^{(3)}}{2 n}\left|A_{0}^{2}\right|^{2}\right)=A_{0} e^{-i k_{1} z} \quad E^{\omega}(z, t)=A(z) e^{i\left(\omega t-k z-k_{1} z\right)}
$$

The wave vector is renormalized:

$$
K=k+k_{1}=\frac{\omega}{c}\left(n+\left.\frac{3 \chi^{(3)}}{2 \varepsilon_{0} n} A_{0}\right|^{2}\right)
$$

The effective refractive index depends on the intensity of the beam:

$$
n^{\prime}=n+n_{2} I \quad\left(n_{2}=\frac{3 \eta_{0} x^{(3)}}{\varepsilon}\right)
$$

Propagation in Kerr media

Self-phase modulation (ultrashort pulses)
refractive index is time dependent
phase of the pulse is modulation
creation of new frequency components (bandwidth broadening)
pulse shortening
Self-focusation (intense beams)
Kerr lensing due to spatial profile of the beam

