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Abstract

A review of theoretical models of giant magnetoimpedance (GMI) is presented. The whole frequency range from kHz to GHz is covered
starting from the simple quasistatic models and ending with the complex dynamic models based on the simultaneous solution of linearized
Maxwell and Landau–Lifshitz equations. The similarity between GMI and FMR is emphasized. The asymmetric GMI (AGMI) behavior
is discussed in more detail. Three different mechanisms of asymmetry are outlined. Based on the theoretical results the rules for obtaining
high performance GMI materials are put forward.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The giant magnetoimpedance (GMI), the huge change of
ac impedance of soft magnetic conductors upon applica-
tion of dc magnetic field, attracts much attention of research
teams all over the world because of its perspective applica-
tions. The GMI-based devices are already achieving a devel-
opment stage that is mature enough to enter in the relevant
area of extremely sensitive magnetic field and strain sensors.
The design of new application oriented materials, however,
requires a deeper understanding of magnetic structure and
magnetization dynamics of soft magnetic metals. The aim
of this paper is to make a brief review of theoretical models
of GMI and to show how they can be used to optimize the
properties of GMI materials for sensing applications.

According to definition, the complex impedance,Z(ω) =
R + iX, is given by the ratioUac/Iac, whereIac is the am-
plitude of sinusoidal current passing through the conductor
andUac the voltage measured between its ends. In ferromag-
netic metals this definition has only limited validity, because
a ferromagnetic metal is generally a non-linear material. In
linear approximation, the GMI ratio is:

Z

Rdc
= jz(S)

〈jz〉q (1)

whereRdc is the dc resistance,jz(S) the axial component of
current density on the surface and〈jz〉q is its average value
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over the conductor cross-sectionq. Alternatively, the ratio
can be obtained from the surface impedance tensorζ̂:

Z

Rdc
= q

ρl

(
ζzz− ζzφ

hz(S)

hφ(S)

)
(2)

whereρ is the resistivity,l the length of cross-section contour
andhz andhφ are the axial and circumferential components
of ac magnetic field, respectively.

The current densityj or the magnetic fieldh can be
obtained, within the frame of classical electrodynamics of
continuous media, by the simultaneous solution Maxwell
equations and Landau–Lifshitz equation of motion. For
low-signal approximation, the following linearized equa-
tions are obtained:

∇2h − 2i

δ2
0

h = 2i

δ2
0

m − grad divm (3)

whereδ0 = √
2ρ/ωµ0 is the non-magnetic skin depth and

m is the ac component of magnetization, and

i
ω

γ
m = m ×

(
H eff,0 + i

αω

γMs
M0

)
+ M0 × heff (4)

whereM0 and H eff,0 are the equilibrium dc components
of magnetization and effective field, respectively,heff the
ac component of effective field,γ the gyromagnetic ratio
andα is the Gilbert damping parameter. Different theoreti-
cal models use different simplifying assumptions to get the
approximate solution ofEqs. (3) and (4)with appropriate
boundary conditions.

Using the simple material relationm = χh, instead of
Eq. (4), the well known classical skin effect solution of
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Eq. (3)can be found[1]. For example for a cylindrical wire
with the radiusa:

Z

Rdc
= ka

J0(ka)

2J1(ka)
(5)

and for an infinite film of thicknesst are obtained.

Z

Rdc
= k

t

2
cot

(
k
t

2

)
(6)

Here, the propagation constantk is given byk = (1 − i)/δ,
with the classical skin depthδ = √

2ρ/ωµ0(1 + χ).

2. Theoretical models

Depending on the frequencyω of the driving currentIac
the giant magnetoimpedance can be roughly separated into
four frequency regimes:

(i) Very low frequencies, from zero up to about 10 kHz.
Large voltage peaks between the sample ends are in-
duced mainly due to large Barkhausen jumps in the
circular magnetization[2]. The behaviour is highly
non-linear. The skin effect is very weak and mainly
the reactanceX contributes to the impedance change.
For low-signal levels, where the sample could exhibit
nearly linear behaviour, the effect is very weak and
hardly observable.

(ii) Low frequencies, from about 10 kHz to about 1 MHz.
GMI originates basically from the variations of the skin
depth due to strong changes of the effective magnetic
permeability caused by a static magnetic field. In this
case, both domain walls and magnetization rotation
contribute to the circumferential permeability.

(iii) Intermediate frequencies, from about 1 MHz to few
hundred MHz. In this regime, the domain walls are al-
ready strongly damped by eddy currents and only mag-
netization rotation contributes to GMI.

(iv) Very high frequencies, of the order of GHz. The mag-
netization rotation is strongly influenced by the gyro-
magnetic effect and the ferromagnetic relaxation. The
impedance maxima are shifted to higher fields, where
samples are already magnetically saturated. Strong
changes in magnetic penetration depth are caused by
the same mechanisms as in the ferromagnetic reso-
nance.

The theoretical models can be divided into three cate-
gories, which are closely related to the frequency ranges
discussed above.

2.1. Quasistatic models

These models are based on the assumption that the fre-
quency is so small that an equilibrium state of the system
can be reached at every moment. ThenEqs. (5) and (6)can
be used with the effective circumferential susceptibilityχ

Fig. 1. Domain structure of a uniaxial film with the easy direction along
y-axis.

calculated fromEq. (4), whereω = 0. This procedure is
equivalent to the minimization of free energy.

Machado and Rezende[3] and Atkinson and Squire[4]
investigated GMI in a film with an in-plane anisotropy and
periodic domain structure as shown inFig. 1. The transversal
susceptibility was obtained by minimizing the free energy
with respect to the parametersθ1, θ2 andu.

If the easy direction is perpendicular to the conductor
axis (thenH 0||x and h||y) both, domain wall movement
and magnetization rotation, contribute to the circumferential
susceptibility. If the domain wall displacement dominates
and the magnetization rotation is neglected then cosθ1 =
cosθ2 = cosθ0 = H0/HK and the transverse susceptibility
due to domain wall movement is:

χt,dw = 2u

dh
Ms sinθ0 = 4µ0M

2
s

β

(
1 − H2

0

H2
K

)
(7)

whereβ is the wall pinning parameter andHK the anisotropy
field. The field dependence ofχt,dw is shown inFig. 2(curve
a). On the other hand, if the walls are completely pinned

Fig. 2. Transverse susceptibility calculated for a uniaxial film: (a)H 0 ⊥
easy axis: domain wall movement, (b)H 0 ⊥ easy axis: magnetization
rotation, (c)H 0 || easy axis.
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(u = 0), the transverse susceptibilityχt,rot calculated from
Eq. (4) is then (see, for example[5]):

χt,rot = Ms cos2 θ0

H0 cosθ0 −HK cos 2θ0
(8)

The field dependence of rotational susceptibility (curve
b in Fig. 2) exhibits singularities atH0 = ±HK, where
the torque of anisotropy exerted by the magnetic moment
is compensated by the dc field and a free rotation of mag-
netization is allowed. In real materials, the sharp peaks are
smeared out by the damping of magnetization motion and
by the dispersion of local anisotropies[4,5].

If the easy direction is parallel to the conductor axis (then
H 0||y andh||x), the domain walls do not contribute to GMI
and the transverse susceptibility is:

χt,rot = Ms

HK

(1 − (M0/Ms)(H0/HK))

(1 − (H2
0/H

2
K))

(9)

whereM0 = 2Msu/d is the total dc magnetization. The field
dependence of transverse susceptibility, calculated for the
hysteresis loopM0(H0) shown in the upper part ofFig. 2
(dotted line), is shown by the curve c.

Though the quasistatic models cannot explain the fre-
quency dependence and other GMI properties, they can well
describe some basic features of GMI not only in films but
also in ribbons and wires.

2.2. Eddy current damping of domain wall movement

Generally, both the domain wall movement and the mag-
netization rotation contribute to the total circumferential sus-
ceptibility:

χt = χt,dw + χt,rot (10)

In metallic ferromagnets the domain wall movements are
heavily damped. At medium frequencies, the quasistatic
model can be used only if the eddy current damping of do-
main walls is properly taken into account.

The rough estimate of the influence of driving current
frequency on GMI can be obtained by varying the domain
wall pinning parameterβ in Eq. (7). It was shown that
with increasingβ the continuous change from single- to
double-peak behavior takes place for the case of transver-
sal anisotropy[4]. Machado and Rezende[3] used a viscous
friction force to describe phenomenologically the damping
of domain wall motion. Then the frequency dependence of
transversal susceptibility is given by

χt,dw = χ0

1 − iτω
(11)

where the phenomenological relaxation timeτ is the fitting
parameter. More rigorous treatment can be found in[6],
where the effective medium approximation was used for the
calculation of circumferential permeability for a periodic
bamboo-like domain structure in cylindrical wires. The same
formula asEq. (11)was obtained with the relaxation time

Fig. 3. Coordinate systems in a single-domain planar film.

τ = bχ0/ρ, where the proportionality constantb depends
only on the wire diameter and the domain structure period.
Exact solution of eddy current problem in a cylindrical wire
with periodic bamboo-like domain structure was done by
Chen et al.[7].

2.3. High frequency models of GMI

It has been proved, both theoretically and experimentally,
that the domain wall motion in typical soft magnetic met-
als practically stops in the frequency region of few 10ths to
few MHz. Therefore, at high frequencies the domain walls
contribution to GMI effect can be neglected and only the
magnetization rotations can be considered. There the pro-
cedures known from the theory of ferromagnetic resonance
are suitable for the solution ofEqs. (3) and (4). In the fol-
lowing, the high frequency models will be divided into two
categories according to whether they take into account the
exchange interaction in the effective fieldH eff or not.

2.3.1. Electromagnetic models
When the exchange interaction is neglected, the linearized

Landau–LifshitzEq. (4) represents a linear relationm =
χ̂(r)h between the ac components of magnetization and
magnetic field, wherêχ(r) is the local susceptibility tensor.
Using this relation inEq. (3), a partial differential equation
for h is obtained. In real materialŝχ(r) may be a complex
function of coordinates, which makes the modeling very dif-
ficult. To simplify the solution, simple magnetic structures,
free of magnetic domains, and simple geometrical shapes
(circular cylinders or infinite planar films) were investigated.

An example of the electromagnetic models will be shown
here. Let us assume an infinite single-domain planar film
(Fig. 3) with an in-plane uniaxial anisotropy. All, the dc
field H 0, the static magnetizationM0, and the unit vector
nK of the anisotropy easy axis lie in the film plane. Then
the susceptibility tensor is constant in the sample volume.
By the same procedure as in the FMR theory, the effective
transverse susceptibility can be calculated[8]:

χt = Ms cos2 θ0(Ω +Ms +HK cos2ψ)

(Ω +HK cos 2ψ)(Ω +Ms +HK cos2ψ)− (ω/γ)2

(12)
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where

Ω = H0 cosθ0 + iα
ω

γ
(13)

and the equilibrium angleθ0 is given by the equation:

H0 sinθ0 − 1
2HK sin 2ψ = 0 (14)

The field dependence of skin depthδ can be calculated
from Eq. (12). Then the magnetoimpedance of a wire with
helical anisotropy or a ribbon with in-plane anisotropy can
be obtained usingEq. (5)or Eq. (6), respectively[5,8].

The close relation between GMI and FMR, which has
been pointed out by Yelon et al.[9], can be demonstrated
on Eq. (12). Transverse susceptibilityχt shows the typical
resonance behavior with the maximum of imaginary partχ′′

t
and the change of sign of real partχ′

t at the resonance field
determined by the FMR resonance condition:(
ω

γ

)2

= (H0 cosθ0 +HK cos 2ψ)(H0 cosθ0

+Ms +HK cos2ψ) (15)

Then the theoretical skin depth reaches its minimum value

δm =
√

αρ

γµ0Ms
(16)

and the GMI ratio its maximum. The maximum theoretical
|Z|/Rdc is frequency independent and its magnitude is, with
the exception of GHz frequencies, much larger than is ex-
perimentally observed[10].

The resonance frequency versus applied field, calculated
with material parameters typical for low magnetostrictive
amorphous alloys, is shown inFig. 4. As can be seen, for
frequencies less then 100 MHz, where GMI is usually mea-
sured, the resonance condition cannot be easily satisfied. It
is fulfilled for H0 ≈ HK, but only if the anisotropy axis is
very precisely perpendicular to the dc field direction. Any
small deviation or fluctuation of easy direction substantially
reduces the GMI ratio at lower frequencies. With increasing
frequency, these effects become less important and in the

Fig. 4. Resonance frequencies of a single domain film with an in-plane.

GHz region the experimentally observed GMI ratios well
satisfy the theoretical prediction[11].

The electromagnetic approximation was used for various
model calculations. In case of strong skin effect (when the
skin depth is much smaller than the transversal dimensions
of the conductor) the skin layer can be approximated by
a planar film and the surface impedance obtained for the
film can be used for a conductor of any cross-section. In
the case of weak skin effect, the solution ofEq. (3)is more
complicated and sometimes only approximate solutions have
been found. Cylindrical wires with different types of mag-
netic anisotropy were investigated in[12–14]. A composite
wire consisting of a non-magnetic inner core and an axially
magnetized outer shell with longitudinal anisotropy was de-
scribed by Usov et al.[15]. Magnetoimpedance of a planar
bi-layer film with crossed anisotropy, which is qualitatively
similar to the wire with helical anisotropy, can be found in
[16].

2.3.2. Exchange-conductivity models
The electromagnetic models, mentioned above, describe

qualitatively well the basic features of GMI and can explain
most of the experimental results. There are, however, some
aspects, which cannot be explained in this frame and re-
quire more rigorous theoretical treatment, which takes into
account the exchange stiffness. When the exchange term is
included into the effective fieldH eff the Landau–Lifshitz
and Maxwell equations cannot be separated and must be
solved simultaneously. They provide a system of six partial
differential equations for the vector components ofm andh.
Their solutions must satisfy the boundary conditions, which
combine the usual electromagnetic conditions with the sur-
face spin-pinning. The general solution ofEqs. (3) and (4)
consists of four pairs of wave modes, which besides the
two pairs of electromagnetic modes, considered in the elec-
tromagnetic approximation, include also two pairs of spin
waves[17]. As a consequence of hybridization of electro-
magnetic and spin-wave modes the exchange-conductivity
effect appears, which can influence the GMI magnitude in
the low and medium frequency regions.

The exchange-conductivity effect is caused by the
inter-play between the skin effect and the exchange inter-
action. Because within the skin depth the ac component
of magnetizationm decreases from its surface value to
zero in the bulk, the magnetization is inhomogeneous and
exchange energy increases. Therefore, the exchange inter-
action weakens the skin effect and enhances the skin depth.
In other words, the inhomogeneous ac field excites spin
waves with wavelengths of the order of skin depth, which
enhance the energy dissipation by eddy currents. It may be
roughly interpreted as an apparent increase of resistivity in
ferromagnetic metals.

The exchange-conductivity models of GMI are formally
equivalent to the theory of ferromagnetic resonance in met-
als [9]. The main difference is that at FMR the samples
are completely saturated, while in GMI experiment this
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assumption need not be satisfied. This makes the theory
of GMI more complicated. Also the low-signal condition,
which is well satisfied in the low power FMR experiments,
can be easily violated in the GMI measurements. Before
describing the GMI models, let us first mention the basic
outcomes of the FMR theory.

For a conductor with planar geometry, the general solution
of Eqs. (3) and (4)is assumed in the form of a superposition
of plane waves, e−ikr , propagating perpendicularly to the
surface. For a general orientation of wave vectork with re-
spect toM0 the secular equation for its magnitude is quartic
in k2, leading to four pairs of waves−k0, k0; −k1, k1; −k2,
k2; −k3, k3 of mixed spin wave and electromagnetic charac-
ter [18]. The amplitudes of individual waves are determined
by the boundary conditions. In case of parallel resonance,
which is usually realized in GMI experiments,M0 lies in
the sample plane and consequently the waves propagate in
the perpendicular direction. Then the secular biquartic equa-
tion decomposes intok0 = (1 − i)/�0, which corresponds
to the non-magnetic skin effect for longitudinally polarized
electromagnetic waves, and the bicubic equation:

k6 + c1k
4 + c2k

2 + c3 = 0 (17)

for the three pairs of transversally polarized “magnetic”
waves. At very high frequencies the electromagnetic and
spin-wave branches can be well distinguished. But below
certain, so called “cross-over”, frequency the two wave
branches become strongly mixed near the resonance[17]. It
is just the region where the exchange-conductivity effect is
observed. Procedures similar to the FMR theory were used
to describe GMI in planar films and circular cylinders.

A single-domain planar film with an in-plane anisotropy
(seeFig. 3) was investigated in[8]. It was shown that for an
oblique magnetization (θ0 �= 0) the impedance can be de-
scribed by the two dimensional tensorẐ, which is diagonal
in the coordinate system (x, y′, z′) related to the equilibrium
directionM0. For an arbitrary direction of driving current
Iac, the impedance is:

Z = Zy′y′ sin2 β + Zzzcos2 β (18)

whereβ is the angle between magnetizationM0 and the driv-
ing current. The transverse non-magnetic componentZy′y′
of impedance tensor is given byEq. (6) with k = k0. An
analytic formula for the longitudinal componentZzz was ob-
tained from the boundary conditions for free surface spins.

GMI in cylindrical wires was investigated by Ménard et al.
[19,20]. An analytical expression for the surface impedance
Zs was found. When the anisotropy and exchange interaction
were neglected, the formula for impedance reduced toEq. (5)
with k corresponding to the Larmor electromagnetic wave.
For helical anisotropy, the surface impedance is:

Zs = 1 + Z0ZM +
√
(1 − Z0ZM)2 − (Z0 − ZM)2sin2 2θ0

2(Z0 cos2 θ0 + ZM sin2 θ0)

(19)

whereZ0 = ζy′y′ andZM = ζz′z′ are the diagonal compo-
nents of surface impedance tensorζ̂. For |Z0|, |ZM | � 1,
this formula reduces to an expression similar toEq. (18). The
solution of secularEq. (17)and analytic formula forZM were
simplified by neglecting the contribution of anti-Larmor spin
wave. Using the simplified solution they have shown that,
when the damping is neglected (α = 0), the minimum skin
depth is given by

δmin ≈
(

Aρ

ωµ2
0M

2
s

)1/4

(20)

for ω below the cross-over frequency:

ωc = 4α2γ2AMs

ρ
(21)

where the strong mixing of Larmor electromagnetic and
spin-wave branches takes place. (A is the exchange stiff-
ness constant.) In typical soft magnetic amorphous met-
als ωc/2π is of the order 100 MHz. As a consequence of
exchange-conductivity effect the maximum theoretical GMI
ratio scales as (ω)1/4 at low and medium frequencies. Above
ωc the theoretical limit of GMI is given byEq. (16).

3. Asymmetric GMI

Much attention has been paid recently to asymmetric GMI
(AGMI) effect, which can be very promising for the devel-
opment of auto-biased linear field sensors.

Asymmetric GMI was first announced by Kitoh et al.[21]
for twisted Co-based amorphous wires with dc bias current
superimposed on the driving current. Later on a similar effect
was observed on as-quenched amorphous ribbons[22] and
wires [23] and on Joule heated wires[24]. Field-annealing
in air or moisture atmosphere with weak longitudinal or cir-
cumferential magnetic fields also produces AGMI in amor-
phous ribbons[25] and wires[26]. Gunji et al. [27] and
Makhnovskiy et al.[28] reported another method of pro-
ducing asymmetrical GMI characteristics, utilizing an ax-
ial ac-bias-field. Though the mechanisms of AGMI may
be different and sometimes the origin of asymmetry is un-
known, three different mechanism of AGMI can be now
recognized:

• asymmetry due to dc bias current,
• asymmetry due to ac-bias-field,
• asymmetry due to exchange bias.

The principal features and the origins of these mechanisms
are briefly discussed below.

3.1. AGMI due to dc bias current

This type of asymmetry is caused by the combination
of helical magnetic anisotropy with circumferential dc



192 L. Kraus / Sensors and Actuators A 106 (2003) 187–194

field produced by the bias current[21]. Similar asymme-
try was observed on the as-quenched ribbons[22] and on
as-quenched and Joule heated wires[23,24]. Even though
the helical anisotropy was not intentionally induced in
these cases the origin may be the same because it has been
proved that in as-quenched wires some spontaneous helical
anisotropy is present[29]. The same may be true for the
as-quenched ribbons.

Without the bias current (Idc = 0) a symmetric double-
peak GMI curve is usually observed. WhenIdc increases one
peak enhances and the other diminishes, depending onIdc
orientation[22]. The positions of peaks, however, remain
practically unchanged. When the direction of bias current
is reversed the asymmetry also reverses. With increasing
frequency, the asymmetry first increases and then decreases
showing a maximum at a certain frequency. The asymmetry
as a function ofIdc, measured at a constant frequency, also
shows a maximum. For higher frequencies, the maximum
shifts to higher currents, broadens and its height decreases
[23].

The theoretical explanation, based on the electromagnetic
model, was done by Panina and coworkers[14,30]. They
showed thatζzz component of surface impedance becomes
asymmetric, when a circumferential dc magnetic fieldHφ

is added. The asymmetry is related to the axial hysteresis
loop, which is also asymmetric. The numerical simulations
showed that forHφ slightly higher thenHK sinα, whereα is
the angle between the circumferential and the easy directions
(spiral angle), the hysteresis disappears and a large GMI
asymmetry is observed.

A simple explanation of asymmetry can be obtained for
the case of strong skin effect, when the skin layer can be
approximated by a thin film on the wire surface. Using
the resonance condition (15) withω → 0 the approximate
condition for maximum GMI can be obtained. The bias
currentIdc, passing through the wire, produces the circum-
ferential fieldHφ = Idc/2πa on the surface. Then the total

dc field on the wire surface is
√
H2

0 +H2
φ and makes the

angle arctan(Hφ/H0) with the axis. The resonance condition
for the total dc field requires:

H0 ≈ HK cosα and Hφ ≈ −HK sinα (22)

When the spiral angle of helical anisotropy isα �= 0, the
resonance condition can be satisfied only for one orientation
of H0 and the asymmetry appears.

3.2. AGMI due to ac-bias-field

Gunji et al.[27] found AGMI in a CoFeSiB wire subjected
to a pulse helical magnetic field, which was obtained by an
ac pulse current passing through the wire and a coil wound
around it (connected in series). The phenomenon was sys-
tematically investigated by Makhnovskiy et al.[28] on an
as-quenched CoFeSiB wire using the driving current con-
sisting of a harmonic currentIac superimposed on a dc bias

currentIdc. The circumferential and axial components of the
helical field were provided by the wire and the magnetizing
coil, respectively.

The asymmetry comes from the combination of helical
magnetization with the axial ac field, which is described by
the second term on the right hand side ofEq. (2). The first
term on the right hand side is related to the circumferential
magnetization process (mφ−hφ) and corresponds to the or-
dinary magnetoimpedance effect. The second term, on the
other hand, corresponds to “cross-magnetization” process
(mφ−hz) [28], which is equivalent to Matteuchi effect[31].
If θ0 �= 0 the off-diagonal elementζzφ is non-zero and is an
anti-symmetric function ofH0. The Matteuchi component
of impedance can be controlled also by the ratiohz/hφ, i.e.
by the number of turns of the driving coil. When this ratio is
high only the Matteuchi effect contributes to the impedance
and the asymmetry is the highest.

3.3. AGMI due to exchange bias

The third, and yet not well understood, type of AGMI
was announced by Kim et al.[25]. A large asymmetry was
observed in CoFeNiBSi ribbons field-annealed at 380◦C in
air with a weak magnetic fieldHa (4–240 A/m) along the
ribbon. The samples annealed in vacuum did not show the
asymmetry. The asymmetry in ribbons annealed in air de-
pends on the magnitude and direction ofHa with respect
to the measuring fieldH0. For Ha = 0, a nearly symmet-
ric double-peak GMI curve is observed. With increasingHa,
the peak for the same direction ofH0 increases and for the
opposite direction decreases. A very large asymmetry is ob-
served forHa > 40 A/m at low frequencies (about 100 kHz)
with a step-like change atH0 ≈ 0. This phenomenon is
called the “GMI valve”. The asymmetry decreases at higher
frequencies, where the rotational contribution to GMI be-
comes dominant. Similar AGMI was reported for amorphous
CoFeSiB wires field-annealed in a moist atmosphere with a
weak circumferential field produced by dc current flowing
though the wire[26]. A profound asymmetry was observed
for the current above 4.5 mA.

The phenomenon was attributed to crystallization of the
surface underlayer, which becomes to be depleted in B and
Si due to the surface oxidation. This type of heat treatment is
known to produce asymmetric hysteresis loops in amorphous
ribbons due to the exchange interaction of amorphous bulk
with the magnetically harder crystalline phase on the surface
[32]. When the crystallization takes place in the presence
of a weak magnetic field the crystallites are magnetically
ordered, which results in an effective unidirectional surface
anisotropy.

An attempt to explain the exchange-biased asymme-
try theoretically by the quasistatic model, where the
unidirectional exchange anisotropy was replaced by an
effective dc-bias-field[33], was unsuccessful (see[34]).
More theoretical work is needed to describe properly this
phenomenon.
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4. Materials optimization

The optimum GMI properties depend on the particular
application, for which the GMI element should be used. For
some applications also the fabrication simplicity and low
cost are very important.

The most general requirements on GMI materials are the
high GMI ratio and its sensitivity to applied magnetic field.
Both these parameters require high magnetic softness. As
can be seen fromEq. (16), the most important for the high
theoretical GMI ratio are the high saturation magnetization,
low resistivity and small ferromagnetic relaxation parameter
α. While the rules for controlling the first two are sufficiently
well known, there is only little known about the ferromag-
netic relaxation. The gyromagnetic ratioγ is unimportant,
because it changes only in the range of few percent for all
3d-based ferromagnetic metals. Because the relative change
of impedance scales theoretically asH0/HK weak magnetic
anisotropy is important for achieving high field sensitivity.

As has been shown, the theoretical skin depth can be
hardly achieved at the driving frequencies below 1 GHz,
where most of the practical applications are expected. There
the another material parameters become more important.
A good criterion for large GMI ratio at the intermediate
frequencies, where the magnetization rotation dominates, is:

How precisely the FMR resonance condition can be ful-
filled in the whole volume of the skin layer?

From this point of view uniaxial magnetic anisotropy, per-
pendicular to the direction of internal dc field, is the best.
There are few ways how to obtain anisotropy perpendicular
to the axis of conductor:

• Field-annealing: In ribbons or films, it can be induced by
annealing in transversal magnetic field. In wires, the cir-
cumferential magnetic field produced by applied current
should be used.

• Stress-annealing: In Co-rich amorphous alloys (ribbons or
wires), tensile stress along the conductor is applied during
annealing.

• Stress-induced anisotropy: In materials with negative
magnetostriction tensile stress induces the transversal
anisotropy. In glass-covered microwires the glass coat
itself produces this kind of stress.

Any fluctuations of local magnetic anisotropy (especially
the orientation of easy axis) substantially deteriorate the
GMI magnitude. Therefore, either the inhomogeneous inter-
nal stresses should be reduced as much as possible or ma-
terials with very low magnetostriction should be used.

The fluctuation of saturation magnetization can also lead
to the spread of resonance field and the deterioration of
GMI. It is not only becauseMs directly appears inEq. (15)
but also because such fluctuations lead to random magne-
tostatic fields, which would appear in the total internal dc
field H 0.

Finally, the surface roughness should be mentioned. It is
quite evident that for large skin effect the surface quality
plays an important role. It is not only because the skin depth
may become smaller than the surface irregularities, but also
because of stray fields, which appear on the rough surface.
The dc component of stray fields can cause the fluctuation
of H 0, as mentioned above. The ac component, on the other
hand, caused the two-magnon scattering and increases the
ferromagnetic relaxation. High quality surfaces can be ob-
tained for glass-coated microwires or films prepared by vac-
uum or electro-deposition techniques.

In AGMI elements, which are required for linear field
sensors, the asymmetry of GMI curve is an additional im-
portant parameter. Only two of the three AGMI types are
useful for practical applications. The ac-bias-field AGMI
can be left out. First, it is based on Matteuchi effect. Second,
it brings only little improvement with respect to the clas-
sical dc-bias-field method, because additional magnetizing
coils are required in both cases.

The asymmetry due to dc bias current can be controlled by
the anisotropy fieldHK, the spiral angleα and the bias cur-
rent Idc. To determine the optimumHK andα more detailed
theoretical analysis is required. The optimum bias current
can be, however, estimated from the condition (22).

The exchange-biased AGMI, which does not require any
bias current, is the most promising for practical applications.
It is now restricted only to amorphous alloys and its deeper
understanding requires further experimental and theoretical
work.
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