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Introduction
Nucleation

process leading to the formation of a new phase (solid, liquid) within metastable
original phase (undercooled melt, supersaturated vapor or solution)

first step in crystallization process; plays a decisive role in determining the
crystal structure and the size distribution of nuclei
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nuclei of a new phase (droplet, crystal)

parent phase (vapor, solution or liquid)

homogeneous nucleation (HON)
(at random sites in the bulk of a parent phase)

heterogeneous nucleation (HEN)
(on foreign substrate, impurities, defects, active centres)

nucleus:
�� ��? the smallest observable “particle”

�� ��? (often ≈ 1µm)

Clusters of a new phase are formed on nucleation sites due to fluctuations and after
overcoming some critical size (< 1nm) become nuclei (overcritical clusters).
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Introduction
Critical supersaturation

Experimental data: H.R. Pruppacher: A new look at homogeneous ice nucleation
in supercooled water drops, J. Atmospheric Sciences 52(11) (1995) 1924.

Supersaturation (supercooling) increases with volume decrease.
⇒ nucleation kinetics in confined volumes
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Standard nucleation model
UNARY NUCLEATION

(single component system of a new phase)
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Standard nucleation model
Kinetic equations

k+
i (k−i ) – attachment (detachment) frequencies of molecules

dFi

dt
= k+

i−1Fi−1 − [k+
i + k−i ]Fi + k−i+1Fi+1 = Ji−1(t)− Ji (t) (1)

Ji (t) = k+
i Fi (t)− k−i+1Fi+1(t) (2)

Fi – number density of clusters of size i
Ji - cluster flux density (nucleation rate for i∗)
k+

i (k−
i ) – attachment (detachment) frequencies

Total number of nuclei greater than m : Zm(t) =
∑

i>m Fi (t) =
∫ t

0 Jm(t ′)dt ′

Local equilibrium:

Ji = 0 ⇒ k+
i F 0

i = k−i+1F 0
i+1 ⇒
�



�
	k−i+1 = k+

i
F 0

i
F 0

i+1
= k+

i exp
(

W i+1−W i
kBT

)
(3)
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Kinetic equations
Equilibrium

Ji = 0 ⇒ k+
i F 0

i = k−i+1F 0
i+1 (4)

⇒ F 0
i = F 0

1
k+

1 k+
2 k+

3 . . . k+
i−1

k−2 k−3 k−4 . . . k−i
F 0

i – equilibrium number of cluster formed by i molecules It can be shown that

F 0
i = B2 exp

(
−Wi

kT

)
Homogeneous nucleation, self-consistent model: B2 = N1 exp

(
W1
kT

)
N1 – number of molecules within parent phase
Knowing F 0

i and k+
i ⇒ k−i from Eq. (4).
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Standard nucleation model
Classical nucleation theory (CNT)

Initial and boundary conditions

N1 - number of molecules (number of nucleation sites)
F1(t = 0) = N1, Fi>1(t = 0) = 0

F1(t) = N1 CNT

t � induction time⇒
Stationary nucleation (steady-state): Ji (t) = JS = const .

JS =

( ∞∑
i=1

1
k+

i F 0
i

)−1

exact analytical formula

JS = k+
i∗ zF 0

i∗ , where Zeldovich factor: z =

√
1

2πkT

(
−d2Wi

di2

)
i=i∗

F 0
i = B exp

(
−Wi

kT

)
; B = N1 exp

(
W1

kT

) �� ��k+
i ,W i =?; small clusters?
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Standard nucleation model
Stationary nucleation (steady-state)

Ji = JS = const . for any cluster size i (N1 = const .!)⇒
Boundary conditions:

F S
i → F 0

i for i → 1; F S
i → 0 for i →∞

JS = k+
i F S

i − k−i+1F S
i+1

= k+
i F 0

i
F S

i

F 0
i
− k−i+1F 0

i+1︸ ︷︷ ︸F S
i+1

F 0
i+1

= k+
i F 0

i

(
F S

i

F 0
i
− F S

i+1

F 0
i+1

)
k+

i F 0
i

M−1∑
i=1

JS

k+
i F 0

i
=

(
F S

1

F 0
1
− F S

2

F 0
2

)
+

(
F S

2

F 0
2
− F S

3

F 0
3

)
+

(
F S

3

F 0
3
− F S

4

F 0
4

)
+ . . . = 1+

F S
M

F 0
M
→ 1

for M →∞
�
��

�
��

�
��

�
��

�
��

JS =

( ∞∑
i=1

1
k+

i F 0
i

)−1

exact analytical formula
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Standard nucleation model
k+

i - attachment frequency

k−i follows from the principle of local equilibirum (3)

Crystal nucleation

Crystal phase corresponds a stable phase, liquid a metastable phase, and in between is the
diffusion activation energy.

From: Yukio Saito,Statistical Physics of Crystal Growth, Word Scientific (1996).

k+
i = RDAi exp

(
−

ED

kT

)
exp

(
−

q(Wi+1 −Wi )

kT

)
; q = 0.5[1 + sign(Wi+1 −Wi )]

Ai = γi2/3 = 4πr2 – surface area
RD – mean number of molecules striking on unit nucleus surface
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Standard nucleation model
k+

i - attachment frequency

Vapor→ crystal

RD =
P√

2πm1kT
(deposition rate); P – vapor pressure; m1 – molecular mass

Melt→ crystal (unary parent phase)
D. Turnbull, J. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17 (1949) 145.

RD = NS

(
kT
h

)
; NS = %SAi

NS – number of nucleation sites on the nucelus surface; %S – surface density of molecules

Solution→ crystal
HON: (A) Direct-impingement control / (B) Volume-diffusion control

RD = CNS

(
kT
h

)
; C - concentration; (A) nucleation kinetics is restrictive

RD − incoming diffusion flux of monomers; (B) HON is controlled by volume diffusion

Details: D. Kashiev, Cryst. Res. Technol. 38 (2003) 555.Z. Kozisek (Prague, Czech Republic) Nucleation kinetics 2-6 Nov 2015 Lyon 13 / 37



Standard nucleation model
Work of formation of clusters

Formation of phase interface is energetically disadvantageous

Homogeneous nucleation:

Capillarity approximation

Wi = −i∆µ+ γi2/3σ︸ ︷︷ ︸ = −
4
3πr3

v1
∆µ+ 4πr2σ

W S =
∑

k Akσk – surface energy

i – cluster size (number of molecules within cluster)
r – cluster radius; σ – interfacial energy; v1 – molecular volume
∆µ – difference of chemical potentials
Ak – surface areas; σk – corresponding interfacial energies

Vn% = im1 ⇒ r(i)

Vn - nucleus volume; % – density of crystal phase; m1 – molecular mass
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Standard nucleation model
Work of formation of clusters

Homogeneous nucleation
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∂i
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(
2γσ
3∆µ

)3

; i∗ – critical size; W∗ = Wi∗ – nucleation barrier

melt→ crystal: ∆µ =
∆hE

NATE
(TE − T ) solution→ crystal: ∆µ = kBT ln S

∆hE – heat of fusion; NA – Avogadro constant; TE – equilibrium temperature; T – temperature
kB – Boltzmann constant; S – supersaturation;
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Standard nucleation model
Work of formation of clusters

Nucleation in polymer systems: thermodynamic aspects

M. Nishi et al., Polymer Journal 31 (1999) 749.
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Standard nucleation model
Classical nucleation theory

Classical nucleation theory (CNT): fails to explain exp. data (Wi = ??)

Argon Lennard-Jones nucleation – MC simulations

δ∆Wn = Wn −Wn−1

⇒ Down to very small cluster sizes,
classical nucleation theory built on the
liquid drop model can be used very
accurately to describe the work
required to add a monomer to the
cluster!

However, erroneous absolute value for
the cluster work of formation, Wi .

B. Hale, G. Wilemski, 18th ICNAA conference (2009) 593.
J. Merikanto et al., PRL 98 (2007) 145702.
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Standard nucleation model
Confined systems

Initial and boundary conditions
Fi (t = 0) = F 0

i pro i ≤ i0 (usually i0 ≈ i∗/2)

F 0
i - equilibrium distribution of nuclei

Fi (t = 0) = 0 pro i > i0

F1(t) = F 0
1 = Nn = const . CNT model (HON+HEN)

Nn – number of nucleation sites (Nn = N1 for HON) Nn �
∑

i>1 iFi

F1(t) = N1(t = 0)−
∑

i>1 iFi (t) confined system (HON)

F1(t) = Nn(t = 0)−
∑
i>1

Ns
i (t)

︸ ︷︷ ︸
confined system (HEN)
free substrate surface ↓

number of nucleation sites occupied by nuclei

N1(t) = NT −
∑

i>1 iFi (t) confined system (HEN)
volume of parent phase ↓

N1 - number of molecules within parent phase

NT - total number of molecules within system (liquid + solid phase)
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Selected Applications
Homogeneous nucleation

HON: ethanol, V→L transition (T = 260 K)
[Z. Kožíšek et al., J. Chem. Phys. 125 (2006) 114504]
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Selected Applications
Homogeneous nucleation

Size distribution of nuclei
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Selected Applications
Homogeneous nucleation

Distribution function - time dependence

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0  20  40  60  80  100

F
 (

m
-3

)

Dimensionless time

Sini = 3

 75

150

closed system

open system

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  20  40  60  80  100  120  140
F

 x
 1

0-1
7  (

m
-3

)
Dimensionless time

Sini = 5

24

40

100

closed systemopen system

Z. Kozisek (Prague, Czech Republic) Nucleation kinetics 2-6 Nov 2015 Lyon 21 / 37



Selected Applications
Homogeneous nucleation

Distribution function - size dependence (Sini = 5)
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Selected Applications
Homogeneous nucleation

Nucleation rate - time dependence
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Selected Applications
Homogeneous nucleation

Nucleation rate (Sini = 5, JS
0 = JS at Sini )

Open system (Sini = const .)
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Selected Applications
Homogeneous nucleation

Nucleation rate (Sini = 5)
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Selected Applications
Homogeneous nucleation

Supersaturation
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Selected Applications
Homogeneous nucleation

HON: Liquid/Solution→Solid transition
Z. Kožíšek, CrystEngComm 15 (2013) 2269

Size distribution of nuclei
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Selected Applications
Homogeneous nucleation

Model system: nucleation of Ni melt

DSC experiments and MC simulations [J. Bokeloh et al., PRL 107 (2011) 145701
J. Bokeloh et al., Eur. Phys. J. Special Topics 223 (2014) 511]
J was obtained from a statistical evaluation of crystallization behavior during continuous cooling.
A single Ni sample was repeatedly heated up to 1773 K an subsequently cooled down to 1373 K.

sample masses: 23 µg – 63 mg

survivorship function:
Fsur (∆T ) = 1− exp(

∫
J(∆T )dt)

∆T ⇒ J = Γ exp(−∆W∗

kBT )

MC simulations show a deviation of the
energy of formation ∆Wi from CNT.

However, the actual height of the energy
barrier is in good agreement with CNT.

All system parameters are known⇒ we can determine the size distribution of nuclei Fi
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Selected Applications
Homogeneous nucleation

Ni melt: ∆hE = 17.29 kJ mol−1, TE = 1748 K , %S = 8357 kg m−3, σ = σmT/TE ,
where σm = 0.275 J m−2, E = 29.085 kJ mol−1

T = 1449 K ⇒ i∗ = 456
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456 = 250000 m−3 ⇒ V1 = 1/FS

i∗ = 4 cm3

sample masses: 23 µg – 63 mg
⇒ V = 7.15× 10−9 m3 − 2.9× 10−12 m3

In difference of experimental data, no critical nuclei are formed in Ni melt.
Solution: reduce the interfacial energy or take into account σ(i) dependency⇒

lower nucleation barrier
Maybe heterogeneous nucleation occurs ?
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Selected Applications
Nucleation on active centers

CNT model of nucleation on active centers – one additional equation is needed
[S. Toshev, I. Gutzow, Krist. Tech. 7 (1972) 43; P. Ascarelli, S. Fontana: Diamond Rel. Mater. 2 (1993) 990-996; D. Kashchiev:

Nucleation, Butterworth-Heinemann Boston, 2000]
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Avrami model
Open system

Additional equation:

dZ (t)
dt

= [N0 − Z (t)]JS(t)

Z (t) - the total number of nuclei at time t
N0 - the number of active sites;
JS - time dependent nucleation frequency

(usually taken as fit<F8> parameter)

Our new model does not need additional equation!!
→ only modification of boundary conditions

Z. Kozisek et al., Transient nucleation on inhomogeneous foreign substrate, J. Chem. Phys. 108 (1998) 9835; Nucleation on

active sites: evolution of size distribution, J. Cryst. Growth 209 (2000) 198-202.
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Selected Applications

Nucleation on active centers
HEN: Vapor→Solid transition
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Selected Applications

Nucleation on active centers
HEN: Vapor→Solid transition
H. Kumomi, F.G. Shi: Phys. Rev. Lett. 82 (1999) 2717.
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Selected Applications
Nucleation on active centers

HEN: Vapor→Solid transition
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Selected Applications
Nucleation on active centers

HEN: polymer nucleation from melt (polyethylene) ∆T = 10.4 K
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Z. Kožíšek et al. Nucleation kinetics of folded chain crystals of polyethylene on active centers, J. Chem. Phys. 121 (2004) 1587.

Z. Kožíšek et al. Nucleation on active centers in confined volumes, J. Chem. Phys. 134 (2011) 114904
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Selected Applications
Nucleation on active centers

HEN: polymer nucleation from melt (polyethylene)
2007: K. Okada et al.: Polymer 48 (2007) 1116-1126.
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σnano (instead of σ) introduced to fit F S
i ⇒ k∗ = 9, l∗ = 24.9, m∗ = 4.5⇒ 3D model
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Selected Applications
Polymer nucleation on active centers (polyethylene)
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3D: nano parameters, i*=487, iexp=500,630

500
630
20

940
6900

Z. Kožíšek, M. Hikosaka, K. Okada, P. Demo: J. Chem. Phys. 134 (2011) 114904 & 136 (2012) 164506
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Summary
Advantages

Relatively simple model enables to determine basic
characteristics of nucleation in real time.
Model takes into account depletion of the parent phase during
phase transformation.
Model includes exhaustion of active centres
(new approach to heterogeneous nucleation).

This work was supported by the Project No. LD15004 (VES15
COST CZ) of the Ministry of Education of the Czech Republic.

Thank you for your attention.
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