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Na Slovance 2, 182 21 Praha 8
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1. Charge transport in disordered solids

Among thermodynamic and kinetic characteristics of materials the electrical conductivity
plays a relatively important role. Virtually everyone knows Ohm’s law which is rather
easy to observe experimentally. On the other hand, theoretical insight into transport
properties of solids meets a fundamental difficulty already at first stages of the inves-
tigation. The notion of non-interacting electrons in a perfect, translationally invariant
lattice, so helpful in other areas of solid state physics, is not appropriate here as it yields
unphysical zero value of resistivity. In order to achieve meaningful results, some processes
slowing down the electron motion have to be taken into account. This thesis focuses on
an electron gas in impure metals where scatterings of electrons on lattice imperfections
(impurities) represent an important contribution to nonzero resistivity. In particular, this
mechanism is the dominant one at low temperatures where the effects of lattice vibrations
(phonons) become negligible.

The simplest theoretical description of electronic transport was proposed by Drude.
It is built on a classical concept, according to which charge carriers (electrons) are sup-
posed to move freely between successive collisions with randomly distributed scattering
centers, τ being the average time separating these scattering events (see Figure 1). Such
a picture yields the static electrical conductivity of the well known form

σ =
ne2

m
τ (1)

where n, e and m stand for concentration, charge and mass of conduction electrons,
respectively [1]. The Drude conductivity formula (1) can be re-derived even when the

Figure 1: Piecewise motion of a classical par-
ticle in a random potential. The average time
between individual scatterings is τ .
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Figure 2: Two-component substi-
tutional alloy in three dimensions. In
the left part, the two energy disper-
sion relations corresponding to clean
components are sketched. In the
right part, the alloy density of elec-
tronic states is drawn. The wave-
functions from the center of the band
are extended, whereas at band edges,
in the so-called Lifshitz tails (filled
regions in the graph), the electron
eigenstates are localized.
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electrons obey quantum-mechanical laws and not classical equations of motion that were
assumed by Drude. The verbal interpretation of the underlying physics then is that due
to scatterings on impurities the electron eigenstates of an ideal lattice (the Bloch waves
that are extended through the whole sample) have a finite lifetime, τ , instead of an infinite
one which corresponds to a perfect crystal.

The Drude theory works quite well at high temperatures. If a disordered system is
cooled down, quantum coherence causes the disorder to influence the electron motion
more dramatically. Anderson discovered [2] that a sufficiently strong disorder may give
rise to such a destructive interference of scattered electron waves that they change from
extended to spatially confined. Envelopes of such localized wavefunctions have exponen-
tially decaying tails,

|ψ(r)| ∼ exp
(
|r− r0|/ξ

)
(2)

where r0 is a point in space around which the eigenstate is localized. The parame-
ter ξ controls spatial extension of the wavefunction and is called localization length. The
localization effects substantially depend on dimensionality of the system under investi-
gation. They are most pronounced in one dimension where it can be rigorously shown
that all electron eigenstates are localized for arbitrarily weak disorder [3]. Therefore,
infinitely long quantum wires are insulators. In higher dimensions almost no rigorous
results are known. Some evidence has been amassed, based on a scaling hypothesis [4]
or on a self-consistent diagrammatic method [5], indicating that even in two dimensions
all electron states are localized, no matter how weak the disorder is. In the same time,
experimental data for both metallic and insulating behavior in 2D samples very close to
T = 0 K were presented [6]. Attempts to explain such measurements suggest possible
insufficiency of one-particle theories, whereto References 4 and 5 belong, and maintain
importance of electron-electron interactions in realistic situations [7].

In three-dimensional lattices the electronic density of states (DOS) has a structure
as depicted in Figure 2. The electron eigenstates located close to the band edges, in
the so-called Lifshitz tails , are localized, whereas those belonging to the energy interval
around the band center are extended. The energies where the character of wavefunctions
changes are referred to as mobility edges. In Figure 2 we denote them Ec, respectively E ′

c.
At these points the transport behavior goes over from metallic to insulating, i. e., the
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metal-insulator transition (MIT)1 takes place there. As the disorder strength grows, the
mobility edges Ec and E ′

c move towards the band center where they eventually meet
and the whole band becomes localized. Such a scenario, originally based on more or less
intuitive arguments, was later rigorously confirmed [8].

An insight into localized states in the Lifshitz tails may be won on a simple example
of a binary alloy [9]. It can be shown that the density of states of such an alloy is nonzero
for all energies where either one of the densities of states corresponding to respective
clean crystals is nonzero, Figure 2. However, outside the intersection of the two clean
spectra the alloy density of states is rather small in magnitude. The electron wavefunc-
tions contributing to these tails come from such disorder configurations, in which large
islands of one component exist that are immersed, far one from another, into a typical
configuration of atoms in the lattice. In this way we are lead to the conclusion that the
Lifshitz tails are built up of states bound to these rare fluctuations of the spatial distri-
bution of alloy components. The closer to the alloy band edge the eigenenergy of such
a bound state lies, the larger, and thus less probable, is the corresponding fluctuation.

The transition from extended to localized states is not the only change that occurs
in the electronic spectrum as the disorder increases. When the alloy constituents are
different enough, the respective clean bands do not overlap and the alloy band is split
into two subbands. Considering this fact we may ask whether the whole band becomes
localized first and only then splits or if the inverse scenario applies.

Understanding the electron dynamics in three-dimensional disordered lattices is only
qualitative at present. There exists no reliable theory providing quantitative estimates
for positions of mobility edges etc. Several approximation schemes, both analytical [10]
and numerical [11, 12], were developed to calculate quasi-particle spectra in disordered
crystals. The numerical approaches lie outside the scope of this thesis and will not be
discussed. Out of the analytical methods, the coherent-potential approximation (CPA)
turned out to be the most successful. For the binary alloy model introduced above it pre-
dicts the anticipated opening of a band gap for large differences between constituents [13].
On the other hand, the CPA is not able to reproduce the correct bandwidth. Moreover,
when the CPA is applied to transport properties [14], it corresponds more or less to
the simple Drude concept and contains no signs of quantum corrections.

2. Objectives of the thesis

The objective of the thesis is to construct an approximation scheme that inherits the
properties of the coherent-potential approximation and, in the same time, contains non-
trivial quantum corrections to the semi-classical values of transport coefficients. These
corrections, which are absent in the CPA, originate in the inter-site phase coherence that
enhances backward scatterings. Predictions of the demanded theory should comply with
the phenomenological expectations listed above, i. e., the quantum phenomena should
be most pronounced at the band edges and in the contingent impurity band. It will
be demonstrated that the mean-field-like approximation developed in the thesis really

1Several types of metal-insulator transitions are distinguished in the literature. Here we discuss
the Anderson MIT which is caused by disorder. Mott demonstrated that a transition from metallic
to insulating regime can also be driven by electron-electron interactions. Such a phenomenon is called
Mott MIT.
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behaves in that way. Furthermore, since the approximation is self-consistent, it allows
us to access not only corrections of a perturbative character, but non-perturbative ef-
fects as well. The non-perturbative phenomenon that we are heading for is the Anderson
metal-insulator transition.

The model we study is the original Anderson model [2], the Hamiltonian of which
reads

Ĥ =
∑
i,j

tij ĉ
†
i ĉj +

∑
i

Viĉ
†
i ĉi (3)

where ĉ†i and ĉi create and annihilate, respectively, an electron on lattice site i. The
matrix tij describes probability of a particle hopping from site j to site i. In the simplest
version only hoppings between nearest neighbors are allowed, tij = tδ|i−j|,1 . The local en-
ergies Vi are random, characterized by a probability distribution P (Vi). The distribution
function P (Vi) is the same for all lattice sites without any correlations between them.

A direct analysis of the Anderson Hamiltonian (3) is possible only by numerical means,
since it has too many parameters (the on-site potentials Vi) and lacks any apparent sym-
metry that would help with their reduction. As we want to tackle the problem analyt-
ically, we perform averaging over all possible disorder configurations that restores the
translational invariance obeyed by a clean (non-disordered) lattice. The configurational
average 〈F 〉av. of a function of on-site potentials F (Vi, Vj, Vk, . . .) is defined as

〈F 〉av. =
1

NC

∑
{configurations}

F (Vi, Vj, Vk, . . .) (4)

where NC is the total number of disorder configurations compatible with a given macro-
scopic constraint such as fixed impurity concentration. The restoration of the transla-
tional invariance has its price — the averaging procedure transforms the original system
of non-interacting electrons to an ensemble of correlated particles. However, we gain more
than we lose as the artificial interacting system can be studied with the aid of standard
many-body diagrammatic techniques, which is the method utilized in the thesis.

We start with classification of two-particle diagrams into topologically distinct scatter-
ing channels that allows us to formulate self-consistent equations for two-particle Green
functions (parquet scheme). Consequently, an asymptotic limit to high spatial dimen-
sions, i. e. the standard “generator” of mean-field theories, is employed for systematic
construction of approximate solutions of the parquet equations. In the strict limit d = ∞
only terms of the order O

(
(1/d)0

)
contribute and a simple sum of the CPA and the so-

called weak localization correction [15,16] is obtained. A further self-consistent inclusion
of O(1/d) terms leads to an advanced approximation scheme that predicts vanishing of
the electrical conductivity above a certain critical disorder strength in any finite spatial
dimensions.

In the course of developing our mean-field-like solution a crucial difficulty is encoun-
tered — we are not able to comply with the particle number conservation law. In other
words, Ward identities for configurationally averaged Green functions are not fulfilled to
the extent that is nowadays widely assumed. However, it can be demonstrated that the
violation of Ward identities is not an artifact of our approximations. On the contrary,
it is inevitable in principle. It turns out that the particle number non-conservation is
only virtual and can be understood if the configurational averaging is reexamined. The
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conclusion is that only extended states can survive the averaging procedure and that
localized states are lost already during this very early step of the theoretical description
of electrons moving in a random potential.

3. Diffusion of electrons

The electron transport we aim to describe falls among (weakly) non-equilibrium phe-
nomena. Therefore, the proper means to study the physical system of our interest —
many non-interacting electrons on an impure lattice — is to utilize the linear response
theory [17,18]. This is the path we follow in Chapter 2 of the thesis where the formalism
for calculation of transport properties of disordered systems is introduced. In this para-
graph we use a “short cut” starting from quantum mechanics of a single electron. Such
an approach is not as comprehensive as the one of the linear response theory, but it is
likely to provide cleaner physical insight.

The wavefunction of an electron on a lattice can be written as |ψ(t)〉 =
∑

j ψj(t)|j〉
where |j〉 are on-site orbitals (Wannier functions) localized at positions Rj. If we start
with a particle located at site i , i. e., if its wavefunction at time t = 0 has a simple form
ψj(0) = δij, then at later times, t > 0, the wavefunction ψj(t) and the corresponding
particle density nj(t) read

ψj(t) =
〈
j
∣∣ e−iĤt

∣∣ i〉 and nj(t) = ψj(t)ψ
∗
j (t) =

〈
j
∣∣ e−iĤt

∣∣ i〉〈i ∣∣ eiĤt
∣∣ j〉 . (5)

For the given initial condition, ψj(0) = δij, the particle density is given solely by the
transfer probability Pji(t),

nj(t) = Pji(t) = θ(t)
〈
j
∣∣ e−iĤt

∣∣ i〉〈i ∣∣ eiĤt
∣∣ j〉 . (6)

The Heaviside step function was introduced to ensure analyticity of the Fourier trans-
form of Pji from time to frequency. It is tempting to generalize the above equation to
a form nj(t) =

∑
iPji(t)ni(0) that is incorrect, however. Classical quantities, such as the

density ni, do not carry all the quantum-mechanical information.
A direct evaluation of expression (6) is inconvenient, more feasible is to work with the

frequency representation of the probability Pji. If we introduce retarded and advanced
Green functions as Fourier transforms of matrix elements of the evolution operator,

GR
ji(E) = −i

∫ ∞

0

dt ei(E+i0)t
〈
j
∣∣ e−iĤt

∣∣ i〉 =
〈
j
∣∣∣ 1

E + i0− Ĥ

∣∣∣ i〉, (7a)

GA
ji(E) = i

∫ 0

−∞
dt ei(E−i0)t

〈
j
∣∣ e−iĤt

∣∣ i〉 =
〈
j
∣∣∣ 1

E − i0− Ĥ

∣∣∣ i〉, (7b)

then the Fourier transform of the transfer probability Pji is represented as a convolution
of these two Green functions,

Pji(t) =
1

2π

∫ ∞

−∞
dω e−iωtPji(ω) where Pji(ω) =

1

2π

∫ ∞

−∞
dE GR

ji(E + ω)GA
ij(E) . (8)

So far, the probability Pji as well as the one-particle Green functions GR
ji and GA

ji depend
on a particular configuration of disorder, i. e. on one individual choice of local poten-
tials Vi in the Anderson model (3). The quantities Pji, GR

ji and GA
ji are quite complex,
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since they do not display any apparent symmetry that would help treat them. It is the
next step — averaging over all disorder configurations (4) — that makes these functions
maintainable. Configurational averaging is not only a technically motivated procedure
(it restores translational invariance), but has a direct physical content as well, since it
provides reproducibility (sample independence) of final results.

Averaging of the probability expression (8) introduces the two-particle Green function

G
(2)
jk,il(z1, z2) ≡

〈
Gji(z1)Glk(z2)

〉
av.

. It is a nontrivial quantity as an average of a product
generally differs from a product of averages. Due to gained translational invariance the
two-particle Green function depends only on differences of its site indices, moreover, only
three of these differences are independent. This property allows for a threefold Fourier
transform to momentum space,

G
(2)
kk′(z1, z2;q) =

1

N

∑
ijkl

ei(k+q)·Rie−ik·Rle−i(k′+q)·Rjeik′·Rk G
(2)
jk,il(z1, z2) (9)

where N stands for the total number of lattice sites. The diagrammatic representation
we use for the two-particle Green function is

G(2)

z2, l

z1, i

z2, k

z1, j

and G(2)

z2,k

z1,k + q

z2,k
′

z1,k
′ + q

(10)

in direct and momentum space, respectively.
At this point we return from one particle on a lattice back to the many-fermion

systems we intend to investigate. At low temperatures the electron gas is degenerate
and only a small fraction of electrons, having energies close to the Fermi level EF , can
participate in weakly non-equilibrium phenomena such as diffusion. Out of the whole
integral in formula (8) only a narrow vicinity of the Fermi energy survives,

Pji(ω) =
〈
Pji(ω)

〉
av.
≈ φji ∆E =

∆E

2π
GRA

jj,ii(EF + ω,EF ) . (11)

Parameter ∆E measures extension of the relevant energy interval around EF . In the
same time, the quantity ∆E controls “distance” of our transport state from the equilib-
rium one. The differential transfer probability φji describes relaxation of non-equilibrium
particle density variations and will thus be referred to as density relaxation function. Its
momentum representation is given by a trace of the two-particle Green function,

φ(ω,q) =
1

N

∑
ij

eiq·Rie−iq·Rj φji(ω) =
1

2π

1

N2

∑
kk′

GRA
kk′(EF + ω,EF ;q) . (12)

In terms of Feynman diagrams the relaxation function is visualized, in direct and mo-
mentum space, as

GRAi j and

k + q

k′

k′ + q

k

GRA . (13)
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The quasi-classical diffusive relaxation of density inhomogeneities corresponds to small
frequency and small momentum asymptotics of the density relaxation function φ having
a singular form

φ(ω,q) ≈ gF

−iω +Dq2
, D > 0 . (14)

This singularity is called diffusion pole. The newly introduced quantities are the diffusion
constant D and the density of electronic states at the Fermi energy gF = g(EF ). In the
following paragraphs we seek a systematic method for approximate evaluation of the
two-particle Green function in order to access the ω,q → 0 asymptotics of the relaxation
function φ by a fully quantum means. Having such an approximation scheme in hand we
will be able to reliably describe behavior of small density variations even in the case of the
strong disorder limit where quantum coherence effects are expected to play a crucial role.
The key questions to answer are: how the diffusion constant D evolves with increasing
disorder and how the diffusion pole changes as the Anderson localization transition is
approached.

4. Two-particle Green function

As demonstrated above, in order to characterize the electron motion on disordered lattices
we need to evaluate the configurationally averaged two-particle Green function. It is
useful to come over from the full Green function G(2) to a two-particle vertex Γ defined
by a decomposition

G
(2)
kk′(q) = Nδkk′ G1(k + q)G2(k) +G1(k + q)G2(k) Γkk′(q)G1(k

′ + q)G2(k
′) . (15)

The vertex Γ is just the two-particle Green function with the uncorrelated part sub-
tracted. Quantity G(z,k) is Fourier transform of the averaged one-particle Green func-
tion,

G(z,k) =
1

N

∑
ij

eik·Rie−ik·Rj
〈
Gji(z)

〉
av.
. (16)

We suppressed the energies z1 and z2 in equation (15), since they are not dynamical
variables and act only as external parameters. They are easily deducible from one-
electron propagators G1,2(k) = G(z1,2,k).

4.1. Bethe-Salpeter equations

The method we choose for evaluation of one- and two-particle Green functions is the dia-
grammatic perturbation expansion. Since we aim to the disorder-driven metal-insulator
transition that clearly falls among non-perturbative phenomena, we need to sum up in-
finitely many terms in the perturbation series. A convenient way to do so is to select
two-particle irreducible diagrams (diagrams that cannot be split into two parts by cutting
two fermion lines) and then generate the rest of the two-particle diagrams, the so-called
reducible contributions, with the aid of Bethe-Salpeter equation.

There is not a unique way to define two-particle irreducibility and, correspondingly,
there is not only one Bethe-Salpeter equation. One possibility is to single out diagrams
that do not decompose into two parts if the two fermion lines we cut have opposite
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directions, i. e. one of them corresponds to an electron and the other to a hole. Such
diagrams are called electron-hole irreducible and their sum forms the so-called electron-
hole irreducible vertex Λeh. The Bethe-Salpeter equation that generates the electron-hole
reducible diagrams, sum of which is Γ− Λeh, reads

Γ

k

k + q

k′

k′ + q

= Λeh +

k′′ + q

k′′

Λeh Γ , (17a)

Γkk′(q) = Λeh
kk′(q) +

1

N

∑
k′′

Λeh
kk′′(q)G1(k

′′ + q)G2(k
′′) Γk′′k′(q) . (17b)

Another way to separate reducible and irreducible diagrams is to utilize the electron-
electron (hole-hole) irreducibility , in which the two cut fermion lines point in the same
direction. The corresponding irreducible vertex we denote Λee. The Bethe-Salpeter
equation in this electron-electron scattering channel has a form

Γ

k

k + q

k′

k′ + q

=
Λee

+

k + k′ + k′′ + q

−k′′

Λee Γ , (18a)

Γkk′(q) = Λee
kk′(q) +

1

N

∑
k′′

Λee
−k′′,k′(z1, z2;q + k + k′′)

×G1(k + k′ + k′′ + q)G2(k
′′) Γk,−k′′(q + k′ + k′′) . (18b)

In the problem of non-interacting disordered electrons one can identify one more type
of two-particle irreducibility [19]. We do not write down this vertical scattering channel
explicitly as it is not relevant for analysis of the electron diffusion.

When using Bethe-Salpeter equation as a base for an approximation scheme, the
corresponding irreducible vertex, let us choose Λeh, serves as an input that controls
quality of the approximation. Even if only the lowest order term (a single diagram) is
included into Λeh, the full vertex Γ contains infinitely many diagrams known as electron-
hole ladders. Unfortunately, such level of approximation does not show to be very rich. It
provides just the quasi-classical Drude value for the diffusion constant. We hence have to
go one step further and construct self-consistent equations for the irreducible vertices Λeh

and Λee so that already these vertex functions comprehend infinitely many diagrams. It
is the topological nonequivalence of the Bethe-Salpeter equations (17) and (18) that helps
us manage this task.
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4.2. Parquet equation

The key observation leading towards the demanded equations for the irreducible vertices
is that a diagram reducible in one scattering channel is irreducible in the other channels.
In terms of sets of diagrams corresponding to the vertices Λeh, Λee and Γ this statement
reads Γ−Λee ⊂ Λeh. Starting from such a set relation it is quite straightforward to come
to the so-called parquet equation [19, 20,21]

Γkk′(q) = Λeh
kk′(q) + Λee

kk′(q)− Ikk′(q) (19)

where I denotes a two-particle vertex that is irreducible in both involved scattering
channels, I = Λeh ∩ Λee. This vertex will be referred to as completely irreducible. With
the aid of the parquet equation (19), the full vertex Γ can be evaluated employing the two
Bethe-Salpeter equations (17) and (18) simultaneously. The “external” diagrammatic
input is no longer the irreducible vertex Λeh (or Λee), but the completely irreducible
vertex I. Approximating this input by the single lowest order diagram we end up with Γ
of a considerably richer structure than the sum of ladders that is achieved by inserting
the same simplest diagram into Λeh (or Λee).2 The price we pay for this improvement is
that now we have to solve two coupled non-linear integral equations (the Bethe-Salpeter
equations) instead of just one. However, considering an additional symmetry, the time-
reversal invariance, this pair of equations can be reduced to a single equation again.

4.3. Time-reversal invariance

In the case of no external magnetic fields present, the Anderson model (3) is invariant with
respect to time reversal. The time inversion in non-interacting systems is expressed as
inversion of the particle propagation, k → −k, i. e., the electron and hole interchange their
roles. The time-reversal invariance then means that G(z,k) = (T G)(z,k) ≡ G(z,−k).
The action of the time-inversion operator T on a generic two-particle function F is shown
to be (T F )k,k′(q) ≡ F−k′,−k(q + k + k′) . Alike the one-particle Green function G, the
full two-particle vertex Γ is invariant with respect to T , (T Γ)k,k′(q) = Γk,k′(q) . On the
other hand, the irreducible vertices Λeh and Λee do not stay untouched under the time
inversion. Actually, they transform onto each other,

(T Λeh)k,k′(q) = Λee
k,k′(q) and (T Λee)k,k′(q) = Λeh

k,k′(q) . (20)

The same holds for the Bethe-Salpeter equations (17) and (18), the electron-hole scatter-
ing channel changes to the electron-electron one and vice versa. This property allows us
to replace one of the Bethe-Salpeter equations in the set (17), (18) and (19), determining
the vertices Λeh, Λee and Γ as functionals of I, with one of the “mixing” relations (20).
Doing so we finally come to a single integral equation to solve,

Λee
kk′(q) = Ikk′(q) +

1

N

∑
k′′

Λee
−k′′,−k(q + k + k′′)G1(k

′′ + q)G2(k
′′)

×
[
Λee
−k′,−k′′(q + k′ + k′′) + Λee

k′′k′(q)− Ik′′k′(q)
]
. (21)

2The diagrams building up this advanced approximation of the vertex Γ are called parquet diagrams.
The name describes the two-dimensional, area-covering character of these diagrams if they are drawn in
a certain specific way.
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Having Λee, the full vertex is easily found from the parquet equation (19) written in
a form Γ = T Λee +Λee− I that was used already in the square brackets in equation (21).

5. Limit to high spatial dimensions

The fundamental equation (21) is far too complicated to be solved exactly and we have
to resort to an approximate treatment. Usually, the first attempt to introspect properties
of a complex problem is construction of a mean-field approximation. Such a step may
be quite straightforward in the case of classical systems, consider e. g. the Weiss solution
of the Ising model of ferromagnets. Quantum fermionic systems are, on the contrary,
not so easy to tackle as it is not clear what are the relevant parameters that have to
be retained in the demanded simplified description. If plausible physical arguments sug-
gesting a proper reduction of a given problem cannot be found, one needs a robust and
systematic method that would replace the lacking intuition. A technique that proved
successful in this field is the limit to high spatial dimensions [22, 23, 24]. The recipe is:
solve the problem in the asymptotic limit d → ∞, the achieved result will behave as
a mean-field approximation when applied to finite dimensions, say d = 3. For example,
if these guidelines are followed for the Ising model, the Weiss solution emerges. It is one
of the most important achievements of this thesis that we are able to solve the above
equation (21) asymptotically exactly in the limit d → ∞, and thus to find a mean-field
approximation of the full vertex Γ.

In the course of approaching the limit d→∞, the hopping parameter t of the tight-
binding Hamiltonian (3) has to be rescaled, t → t d−1/2, in order to keep the dynamic
balance between kinetic and potential energy [22]. The total energy of the system is not
proportional to the volume in the limit d→∞ without this adjustment [25]. Due to the
modified hopping, the local and non-local elements of the one-particle Green function G
substantially differ. The local part, Gii, remains finite in d→∞, whereas the off-diagonal
(non-local) part, Ḡij ≡ Gij − δijGii, scales as d−1/2. In the momentum representation
these relations read

G(z) =
1

N

∑
k

G(z,k) ∼ 1 and Ḡ(z,k) = G(z,k)−G(z) ∼ d−1/2 . (22)

To take advantage of this diversity it is convenient to reformulate the Bethe-Salpeter
equations (17) and (18) so that the differently behaved Green function elements become
naturally separated. Such a differentiation is obtained when the two-particle irreducibil-
ity is formulated only for the off-diagonal Green function Ḡ. All diagrams containing
only local elements of the one-particle Green function are then qualified as completely
irreducible. The new self-consistent equation for the irreducible vertex has entirely the
same form as equation (21),

Λ̄ee
kk′(q) = Īkk′(q) +

1

N

∑
k′′

Λ̄ee
−k′′,−k(q + k + k′′)Ḡ1(k

′′ + q)Ḡ2(k
′′)

×
[
Λ̄ee
−k′,−k′′(q + k′ + k′′) + Λ̄ee

k′′k′(q)− Īk′′k′(q)
]
. (23)

The only difference is the substitution G,Λeh,Λee, I → Ḡ, Λ̄eh, Λ̄ee, Ī that originates in
the modified definition of the two-particle irreducibility. The full vertex is still found
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from the parquet equation Γ = T Λ̄ee + Λ̄ee − Ī. In the limit d → ∞ the completely
irreducible vertex Ī is local (momentum independent) and represented as a sum of all
completely local diagrams [19,26]. Such a sum is nothing less than the full vertex of the
coherent-potential approximation (CPA) that we denote γ,

Ī = γ ≡ λ+ λG1G2 λ+ λG1G2 λG1G2 λ+ . . . =
λ

1− λG1G2

. (24)

Here λ stands for the CPA irreducible vertex [14,19].
As visualized in expressions (22), the limit to high spatial dimensions suppresses off-

diagonal elements of the one-particle Green function and therefore simplifies momentum
dependencies of all Green and vertex functions. To gain an idea how this reduction works
we list a few formulae explicitly. It is useful to adopt a notation in which elementary
momentum convolutions are represented as contractions,

1

N

∑
k

F1(k + q1)F2(k + q2) = F1(q1)F2(q2) . (25)

Higher order convolutions reduce to products of these elementary contractions in the limit
d→∞. Let us choose a momentum sum over four Green functions Ḡ as an example. In
the leading order of the expansion in the small parameter d−1 we have

1

N

∑
k

Ḡ1(k + q1)Ḡ2(k + q2)Ḡ3(k + q3)Ḡ4(k + q4)

.
= Ḡ1(q1)Ḡ2(q2)Ḡ3(q3)Ḡ4(q4) + Ḡ1(q1)Ḡ2(q2)Ḡ3(q3)Ḡ4(q4)

+ Ḡ1(q1)Ḡ2(q2)Ḡ3(q3)Ḡ4(q4) . (26)

This formula resembles the Wick theorem from the quantum field theory. The convolution
of two one-particle Green functions from the right-hand side, the so-called two-particle
“bubble”

χ̄12(q1 − q2) = Ḡ1(q1)Ḡ2(q2) , (27)

is an important quantity, since it represents a basic building block of other two-particle
functions. Generally, the rule for asymptotic evaluation of multiple convolutions can be
formulated as follows. A convolution of 2n elementary functions (Ḡ or χ̄) decomposes
into a combination of all possible pair-wise contractions. In other words, the elementary
functions Ḡ and χ̄ behave as Gaussian random variables. The pair convolutions needed
for evaluation of formulae such as (26) are given by expression (27) and

Ḡ1(q1)χ̄23(q2)
.
=
W23

4d
Ḡ1(q1 − q2) and χ̄12(q1)χ̄34(q2)

.
=
W12

4d
χ̄34(q1 − q2) . (28)

Equations (28) hold in this form only in the leading non-vanishing order of the d−1 expan-
sion. It is just sufficient, since they will be used in conjunction with the Wick theorem (26)
that holds up to the same precision. The new quantity Wij abbreviates an expression
t2

〈
G2(zi)

〉〈
G2(zj)

〉
where 〈G2(z)

〉
= N−1

∑
kG

2(z,k) .
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Now we use the high-dimensional algebra summarized above to find the asymptotic
solution for the two-particle vertex Γ. From the diagrammatic analysis one can conclude
that the momentum dependence of the irreducible vertices in the limit d → ∞ reads
Λ̄eh

kk′(q) =
∑∞

n=0 Λn χ̄
n(q + k + k′) and Λ̄ee

kk′(q) =
∑∞

n=0 Λn χ̄
n(q). Notice the explicit

fulfillment of the two-particle electron-hole symmetry (20). The expansion of the coeffi-
cients Λn in the small parameter d−1 begins as Λn = γn +O(d−1). In order to determine
the O(d−1) term we insert the aforementioned ansatz for Λ̄ee into equation (23). It finally
yields the vertex Γ in a form

Γkk′(q) =
γ̄

1− γ̄ χ̄(q)
+

γ̄

1− γ̄ χ̄(k + k′ + q)
− (2γ̄ − γ) (29)

where the new quantity γ̄, which in a way generalizes the CPA vertex γ, is a solution of
a self-consistent equation

γ̄ = γ + γ̄
1

N

∑
q

γ̄2 χ̄2(q)

1− γ̄ χ̄(q)
. (30)

Expressions (29) and (30) represent the high-dimensional asymptotics of the full two-
particle vertex Γ that is exact up to the order ∼ d−1.

Although the self-consistent solution (29), (30) was derived from the high-dimensional
reasoning, its application is not restricted to the limit d→∞. It can be, and it is intended
to be, used in any spatial dimensions as a mean-field approximation. In such a case the
d → ∞ limit of the “bubble” χ̄, standing in equations (29) and (30), is replaced with
its actual d-dimensional value. Then, of course, the convolution rules (26) and (28)
cannot be used to simplify the determination of the vertex γ̄ from equation (30). A full
d-dimensional calculation has to be performed instead.

Once we have acquired the vertex Γ we can evaluate the physical quantity of our
interest — the density relaxation function φ. Combining equations (12), (15) and (29)
we come to the diffusion pole of a weighted form

φ(ω,q) =
gF/A

−iω +Dq2
. (31)

This expression substantially differs from the relaxation function (14) where the weight of
the diffusion pole A−1 was fixed to unity in order to precisely correspond to the classical
diffusion equation

(
∂/∂t − D∆

)
n(t, r) = 0. We see that the diffusion equation is not

completely compatible with the developed quantum treatment of the disordered-electron
problem, since we have found that the disorder renormalizes not only the diffusion con-
stant D, but also, and more importantly, the diffusion pole itself via its weight A−1 ≤ 1
(the equality applies only in the limit of a clean system).

6. Mean-field theory of the Landau type

In this paragraph we turn to a model evaluation of the diffusion pole weight A−1. But first
we investigate low dimensions, d ≤ 2, where some important conclusions can be made
immediately. We have seen that for the relaxation function φ to display the diffusion
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Figure 3: Weight of the diffusion pole A−1 and the order parameter in the localized phase
=γ̄(EF + i0, EF − i0) calculated from equation (33). We used a semi-elliptic density of states
with the bandwidth 2w, the self-consistent Born approximation for the local vertices, λ, γ →
λB , γB , and set Cd = 0.1 . Fermi energy EF lies in the center of the energy band.
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Figure 4: Phase diagram for the same setting as in Figure 3. Thick line is the band edge,
hatched area denotes localized states, =γ̄(EF + i0, EF − i0) 6= 0.
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pole, the same pole has to be present in the ee-irreducible vertex Λ̄ee. The expression
responsible for this non-analytic behavior reads

1

1− γ̄ χ̄(q)
∼ 1

−iω +Dq2
. (32)

In equation (30), determining the quantity γ̄, the diffusion pole (32) is integrated over
momentum q. This step represents no difficulty in dimensions d ≥ 3. On the contrary,
in the case of d ≤ 2 the above pole is not integrable. There can be no γ̄ fulfilling equa-
tion (30) in dimensions d ≤ 2 if the vertex Λ̄ee possesses the diffusion pole. Consequently,
our mean-field approximation for two-particle vertices predicts that the diffusive trans-
port cannot take place in low dimensions, d ≤ 2. This result is in agreement with other
treatments [4, 5], which we referred to already in Paragraph 1.

In dimensions d ≥ 3 the diffusive relaxation is generally possible. Since the diffusion
pole in equation (30) is not in higher dimensions as crucial as it is in d ≤ 2, we can
carry out an additional simplification and completely suppress this singularity. Out of
the whole geometric series we retain only its first term,

γ̄ = γ + γ̄
1

N

∑
q

γ̄2 χ̄2(q)

1− γ̄ χ̄(q)
−→ γ̄ = γ +

W 2

8d
γ̄3 = γ + CdW

2γ̄3 . (33)

It is clear that such a reduction is the more acceptable the higher is the spatial dimen-
sionality d. In the model calculations we performed, Figures 3 – 5, the d-dependent
constant Cd introduced in equation (33) does not represent its correct high-dimensional
value (8d)−1. It serves as a free parameter of our approximation instead. It is quite
reasonable to set Cd slightly larger than (8d)−1, since the simplification performed in
formula (33) surely underestimates the right-hand side of the original equation (30).

The cubic equation (33) resembles the Landau mean-field theory of (classical) phase
transitions. It has generally three solutions for γ̄(EF + i0, EF − i0). For sufficiently small
disorder strengths, γ < γc, all three solutions are real. A perturbative solution is of
order γ, while two non-perturbative solutions are of order ±WC

1/2
d . The perturbative

solution increases and the module of the non-perturbative ones decreases with increas-
ing disorder strength. At a critical randomness γc = 2(27CdW

2)−1/2 the two positive
solutions merge and move into the complex plane for γ > γc. Disappearance of real
positive solutions for γ̄(EF + i0, EF − i0) leads to suppression of the diffusion pole and
simultaneously to vanishing of the diffusion constant. Quantity =γ̄(EF + i0, EF − i0),
emerging beyond the critical point in the localized phase (γ > γc), plays the role of
an order parameter for the Anderson metal-insulator transition, see Figure 3.

Typical phase diagrams for localized-extended states calculated from formula (33) are
plotted in Figures 4 and 5. These figures demonstrate that the localization tendencies
are most pronounced close to the band edges and in the impurity band. Results of our
mean-field theory are therefore in a nice agreement with the phenomenological picture
outlined in Paragraph 1.

7. Weighted diffusion pole vs. conservation laws

It was demonstrated that our construction provides very reasonable results that match
phenomenological expectations of how the disordered electrons behave. Before we come to
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Figure 5: Band and mobility edges in energy-disorder plane for a binary alloy. Thick line
is the band edge, region of localized states is hatched. Potential difference between distinct
atoms is ∆. The upper pane shows the symmetric case with concentration of both alloy
components c = 0.5 . The lower pane corresponds to an asymmetric alloy with concentration
of the minor component c = 0.2 . It is clear that the tendencies towards localization are
enhanced in the impurity band. To calculate these figures we used a semi-elliptic band with
the bandwidth 2w. The parameter Cd was set to Cd = 1.8 . The extension of the area
where =γ̄(EF + i0, EF − i0) 6= 0 outside the band is due to incomplete consistency between
one- and two-particle functions.
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Figure 6: Configurational averaging
causes mixing of extended and localized
states if the mobility edge Ec is configura-
tionally dependent. Subpictures (a) and
(b) represent particular configurations of
scattering centers, part (c) depicts config-
urational average. Hatched regions cor-
respond to localized states. In the dou-
bly hatched energy interval eigenstates of
both types are present.

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

Ec
max

Ec
min

(a) (b) (c)
averaging

the final conclusions we should comment on one aspect in which our theory substantially
differs from other approaches found in the literature. The feature we are about to discuss
is the finding that the relevant parameter controlling the transport properties of the
system is the weight A−1 and not the diffusion constant D. This seems controversial,
since the weight A−1 should be fixed to unity via the Ward identity [27,28]

Σ(z1,k + q)− Σ(z2,k) =
1

N

∑
k′

Λeh
kk′(z1, z2;q) [G(z1,k

′ + q)−G(z2,k
′)] (34)

that expresses the particle number conservation law [29, 19].3 As we have A−1 < 1
for any non-vanishing disorder, this conservation law is violated in our approximation
scheme. Such an inconsistency can be understood in terms of incompleteness of the
Hilbert space we work in. The crucial observation is that the localized states cannot be
properly described within the formalism based on configurationally averaged (translation-
ally invariant) Green functions. The Hilbert space of a translationally invariant system
is spanned over the Bloch-wave basis. In the same time, the localized (spatially confined)
electron eigenstates are in the thermodynamic limit orthogonal to the Bloch waves. The
weight of the diffusion pole A−1 being less than one then means that at a given (Fermi)
energy the extended states co-exist with the localized ones that are “invisible” in our
treatment due to the above mentioned orthogonality. The mechanism of emergence of
the mixed energy intervals is visualized in Figure 6. Analysis of the expression for the re-
laxation function φ, equation (31), shows that there are gF/A extended (diffusive) states
and gF (1− 1/A) localized states at the Fermi level EF .

Because the above explanation of the particle number non-conservation is only verbal,
it might be considered insufficient. However, we can offer a formal proof that the Ward
identity (34) cannot be fulfilled in principle. From the asymptotic solution for two-
particle vertices, formula (29), it follows that the electron-hole irreducible vertex Λeh

displays the so-called Cooper pole as it is singular in a point k′ = −k, q = 0 and ω = 0.
It can be shown that this singular form is not limited to d → ∞ but holds in any finite
dimensions as well. The Cooper pole in the vertex Λeh is an image of the diffusion pole
in the relaxation function φ. Because the vertex Λeh is non-analytic, the right-hand side
of the Ward identity and the selfenergy Σ are also non-analytic. The leading singular

3Quantity Σ standing in equation (34) is the selfenergy, i. e. the one-particle irreducible vertex. Due
to length restrictions, the one-particle sector of our approximation is not covered in this abstract. The
reader is referred to the full text of the thesis for details on this subject.



8. Conclusions 19

behavior of the selfenergy is easily evaluated and reads

− 1

N

∑
k

∂ΣR(E,k)

∂E
∼ lim

ω→0
Kd

(
Dk2

F

ω

)2( |ω|
Dk2

F

)d/2

×

1 for d 6= 4l,

ln
Dk2

F

|ω| for d = 4l
(35)

where kF is the Fermi momentum and Kd stands for a dimensionless d-dependent con-
stant. This expressions says that in three dimensions the derivative of the selfenergy with
respect to its energy argument diverges everywhere inside the band. In dimensions d = 1
and d = 2 the selfenergy itself cannot even be defined. Such a result is clearly unphysical
and we are led to a conclusion that we have to give up either the diffusion pole in the
relaxation function φ or the Ward identity (34). Since without the diffusion pole we lose
the physics completely, the only option is to break the Ward identity.

8. Conclusions

A controllable mean-field approximation for two-particle Green functions was derived
within the Anderson model of non-interacting electrons moving on an impure lattice.
This approximation was motivated and justified by the asymptotic limit to high spatial
dimensions. The determination of the approximate two-particle Green functions amounts
to solving just a single algebraic equation for a momentum independent quantity γ̄(EF +
i0, EF − i0). For a weak disorder this quantity is real and positive, and the motion
of electrons has the diffusive character. When a certain critical disorder strength is
exceeded, a nonzero imaginary part =γ̄(EF + i0, EF − i0) emerges. In such a case the
electron diffusion is no longer possible. The function =γ̄(EF + i0, EF − i0) plays the role
of an order parameter in the transition from diffusive to non-diffusive phase. Achieved
results are in agreement with the scenario that is expected to be followed in three and
more spatial dimensions — for a weak disorder the electron eigenstates are extended
throughout the whole sample, whereas for a strong enough disorder all eigenstates become
localized in some finite subvolume.

In the course of development of our theory we discovered a rather surprising fact that
we are not able to fully comply with conservation laws represented by Ward identities.
A further analysis showed that such an inconsistency is not an artifact of our approx-
imations but is of a considerably deeper origin. In Paragraph 7 we argued that the
utilized formalism of configurationally averaged Green functions, which seems to be the
only practicable way to tackle the disordered-electron problem by analytical means, is
inherently incomplete. The averaging over disorder configurations produces an artificial
translationally invariant electronic system, the Hilbert space of which is the one spanned
over the Bloch-wave basis. The problems with conservation laws arise from the fact that
such a Hilbert space cannot comprehend all the physical phenomena concerning electrons
on disordered lattices, since the localized states are orthogonal to this Bloch-wave space
in the thermodynamic limit.
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