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Before the thermodynamic limit, macroscopic averages need not commute for a
quantum system. As a consequence, aspects of macroscopic fluctuations or of con-
strained equilibrium require a careful analysis, when dealing with several observ-
ables. We propose an implementation of ideas that go back to John von Neumann’s
writing about the macroscopic measurement. We apply our scheme to the relation
between macroscopic autonomy and an H-theorem, and to the problem of equiva-
lence of ensembles. In particular, we show how the latter is related to the
asymptotic equipartition theorem. The main point of departure is an expression of
a law of large numbers for a sequence of states that start to concentrate, as the size
of the system gets larger, on the macroscopic values for the different macroscopic
observables. Deviations from that law are governed by the entropy. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2217810�

. INTRODUCTION

“It is a fundamental fact with macroscopic measurements that everything which is measurable
t all, is also simultaneously measurable, i.e. that all questions which can be answered separately
an also be answered simultaneously.” That statement by von Neumann enters his introduction to
he macroscopic measurement.16 He then continues to discuss in more detail how that view could
ossibly be reconciled with the non-simultaneous-measurability of quantum mechanical quantities.
he main qualitative suggestion by von Neumann is to consider, for a set of noncommuting
perators A ,B , . . . a corresponding set of mutually commuting operators A� ,B� , . . . which are each,
n a sense, good approximations, A��A ,B��B , . . . . The whole question is: in exactly what
ense? Especially in statistical mechanics, one is interested in fluctuations of macroscopic quan-
ities or in the restriction of certain ensembles by further macroscopic constraints which only make
ense for finite systems. In these cases, general constructions of a common subspace of observ-
bles become very relevant. Interestingly, at the end of his discussion on the macroscopic
easurement,16 von Neumann turns to the quantum H-theorem and to the relation between en-

ropy and macroscopic measurement. He refers to the then recent work of Pauli,13,15 who by using
disorder assumptions” or what we could call today, a classical Markov approximation, obtained
general argument for the H-theorem.

In the present paper, we are dealing exactly with the problems above and as discussed in
hapter V.4 of Ref. 16. While it is indeed true that averages of the form A= �a1+ ¯ +aN� /N ,B
�b1+ ¯ +bN� /N, for which all commutators �ai ,bj�=0 for i� j, have their commutator �A ,B�
O�1/N� going to zero �in the appropriate norm, corresponding to �ai ,bi�=O�1�� as N↑ +�, it is
ot true in general that
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lim
N→+�

1

N
log Tr�eNAeNB�=

?

lim
N→+�

1

N
log Tr�eNA+NB� .

hese generating functions are obviously important in fluctuation theory, such as in the problem
f large deviations for quantum systems.12 It is still very much an open question to discuss
he joint large deviations of quantum observables, or even to extend the Laplace-Varadhan formula
o applications in quantum spin systems. The situation is better for questions about normal
uctuations and the central limit theorem, for which the so-called fluctuation algebra provides a
ice framework, see, e.g., Ref. 8. There the pioneering work of André Verbeure will continue to
nspire coming generations who are challenged by the features of noncommutativity in quantum

echanics.
These issues are also important for the question of convergence to equilibrium. For example,

ne would like to specify or to condition on various macroscopic values when starting off the
ystem. Under these constrained equilibria not only the initial energy but also, e.g., the initial
agnetization or particle density, etc., are known, and simultaneously installed. As with the large

eviation question above, we enter here again in the question of equivalence of ensembles but we
re touching also a variety of problems that deal with nonequilibrium aspects. The very definition
f configurational entropy as related to the size of the macroscopic subspace has to be rethought
hen the macroscopic variables get their representation as noncommuting operators. One could

gain argue that all these problems vanish in the macroscopic limit, but the question �indeed�
rises before the limit, for very large but finite N where one can still speak about finite dimensional
ubspaces or use arguments like the Liouville-von Neumann theorem.

In the following, there are three sections. In Sec. II we write about quantum macrostates and
bout how to define the macroscopic entropy associated to values of several noncommuting
bservables. As in the classical case, there is the Gibbs equilibrium entropy. The statistical inter-
retation, going back to Boltzmann for classical physics, is however not immediately clear in a
uantum context. We will define various quantum H-functions. Second, in Sec. III, we turn to the
quivalence of ensembles. The main result there is to give a counting interpretation to the ther-
odynamic equilibrium entropy. In that light we discuss quantum aspects of large deviation

heory. Finally, in Sec. IV, we study the relation between macroscopic autonomy and the second
aw, as done before in Ref. 5 for classical dynamical systems. We prove that if the macroscopic
bservables give rise to a first-order autonomous equation, then the H-function, defined on the
acroscopic values, is monotone. That is further illustrated using a quantum version of the Kac

ing model.

I. QUANTUM MACROSTATES AND ENTROPY

Having in mind a macroscopically large closed quantum dynamical system, we consider a
equence H= �HN�N↑+� of finite-dimensional Hilbert spaces with the index N labeling different
nitely extended approximations, and playing the role of the volume or the particle number, for

nstance. On each space HN we have the standard trace TrN. Macrostates are usually identified
ith subspaces of the Hilbert spaces or, equivalently, with the projections on these subspaces. For

ny collection �Xk
N�k=1

n of mutually commuting self-adjoint operators there is a projection-valued
easure �QN� on Rn such that for any function F�C�Rn�,

F�X1
N, . . . ,Xn

N� = �
Rn

QN�dz�F�z� .

macrostate corresponding to the respective values x= �x1 ,x2 , . . . ,xn� is then represented by the

rojection
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QN,��x� = �
�k�xk−�,xk+��

QN�dz�

or small enough ��0. Furthermore, the Boltzmann H-function, in the classical case counting the
ardinality of macrostates, is there defined as

HN,��x� =
1

N
log TrN�QN,��x��

ith possible further limits N↑ +�, �↓0. However, a less trivial problem that we want to address
ere, emerges if the observables �Xk

N� chosen to describe the system on a macroscopic scale do not
utually commute.

Consider a family of sequences of self-adjoint observables �Xk
N�N↑+�,k�K where K is some

ndex set, and let each sequence be uniformly bounded, supN �Xk
N � � +�, k�K. We call these

bservables macroscopic, having in mind mainly averages of local observables but that will not
lways be used explicitly in what follows; it will however serve to make the assumptions plau-
ible.

In what follows, we define concentrating states as sequences of states for which the observ-
bles Xk

N assume sharp values. Those concentrating states will be labeled by possible “outcomes”
f the observables Xk

N; for these values we write x= �xk�k�K where each xk�R.

. Microcanonical setup

. Concentrating sequences

A sequence �PN�N↑+� of projections is called concentrating at x whenever

lim
N↑+�

trN�F�Xk
N��PN� = F�xk� �2.1�

or all F�C�R� and k�K; we have used the notation

trN�· �PN� =
TrN�PN · PN�

TrN�PN�
=

TrN�PN · �
TrN�PN�

�2.2�

or the normalized trace state on PNHN. To indicate that a sequence of projections is concentrating

t x we use the shorthand PN→
mc

x.

. Noncommutative functions

The previous lines, in formula �2.1�, consider functions of a single observable. By properly
efining the joint functions of two or more operators that do not mutually commute, the concen-
ration property extends as follows.

Let IK denote the set of all finite sequences from K, and consider all maps G :IK→C such that

	
m�0

	
�k1,. . .,km��IK

�G�k1, . . . ,km��

i=1

m

rki
� � �2.3�

or some fixed rk�supN �Xk
N � ,k�K. Slightly abusing the notation, we also write

G�XN� = 	
m�0

	
�k1,. . .,km��IK

G�k1, . . . ,km�Xk1

N
¯ Xkm

N �2.4�

efined as norm-convergent series. We write F to denote the algebra of all these maps G, defining
oncommutative “analytic” functions on the multidisc with radii �rk� ,k�K.

N
mc
Proposition 2.1: Assume that P →x. Then, for all G�F,
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lim
N↑+�

trN�G�XN��PN� = G�x� . �2.5�

Remark 2.2: In particular, the limit expectations on the left-hand side of �2.5� coincide for
ll classically equivalent noncommutative functions. As example, for any complex parameters

k ,k�R with R a finite subset of K and for PN→
mc

x,

lim
N↑+�

trN�e	k�R�k�Xk
N−xk��PN� = lim

N↑+�
trN�


k�R

e�k�Xk
N−xk��PN� = 1

o matter in what order the last product is actually performed.
Proof of Proposition 2.1: For any monomial G�XN�=Xk1

N
¯Xkm

N , m�1, we prove the statement
f the proposition by induction, as follows. Using the shorthands YN=Xk1

N
¯Xkm−1

N and y
xk1

¯xkm−1
, the induction hypothesis reads limN↑+�trN�YN � PN�=y and we get

�trN�YNXkm

N − yxkm
�PN��

= �trN�YN�Xkm

N − xkm
��PN� + xkm

trN�YN − y�PN��

��YN�trN��Xkm

N − xkm
�2�PN��

1
2 + �xkm

��trN�YN − y�PN�� → 0

ince PN→
mc

x and �YN� are uniformly bounded. That readily extends to all noncommutative poly-
omials by linearity, and finally to all uniform limits of the polynomials by a standard continuity
rgument. �

. H-function

Only the concentrating sequences of projections on the subspaces of the largest dimension
ecome candidates for noncommutative variants of macrostates associated with x= �xk�k�K, and
hat maximal dimension yields the �generalization of� Boltzmann’s H-function. More precisely, to
ny macroscopic value x= �xk�k�K we assign

Hmc�x� = lim sup

PN→
mc

x

1

N
log TrN�PN� , �2.6�

here lim supPN→
mc

x=supPN→
mc

xlim supN↑+� is the maximal limit point over all sequences of projec-
ions concentrating at x. By construction, Hmc�x�� −� �� �0, + � � and we write 	 to denote the
et of all x�RK for which Hmc�x��0; these are all admissible macroscopic configurations.

lightly abusing the notation, any sequence PN→
mc

x, x�	 such that lim supN�1/N�log TrN�PN�
Hmc�x�, will be called a microcanonical macrostate at x.

. Example

Take a spin system of N spin-1 /2 particles for which the magnetization in the 
-direction,
=1 ,2 ,3, is given by

X

N =

1

N
	
i=1

N

�i

 �2.7�



n terms of �copies of� the Pauli matrices � .
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Let �N be a sequence of positive real numbers such that �N↓0 as N↑ +�. For m�
�m1 ,m2 ,m3�� �−1,1�3, let e� �m� be a unit vector for which m� =me� with m�0. Consider YN�m� �
	
=1

3 m
X

N and its spectral projection QN�m� � on �m−�N ,m+�N�. One easily checks that if

1/2�N↑ +�, then �QN�m� ��N is a microcanonical macrostate at m� , and

Hmc�m� � = �−
1 − m

2
log

1 − m

2
−

1 + m

2
log

1 + m

2
for m � 1

− � otherwise.

. Canonical setup

The concept of macrostates as above and associated with projections on certain subspaces on
hich the selected macroscopic observables take sharp values is physically natural and restores

he interpretation of “counting microstates.” Yet, sometimes it is not very suitable for computa-
ions. Instead, at least when modeling thermal equilibrium, one usually prefers canonical or grand-
anonical ensembles, and one relies on certain equivalence of all these ensembles.

. Concentrating states

For building the ensembles of quantum statistical mechanics, one does not immediately en-
ounter the problem of noncommutativity. One requires a certain value for a number of macro-
copic observables and one constructs the density matrix that maximizes the von Neumann en-
ropy.

We write �N→
1

x for a sequence of states ��N� on HN whenever limN↑+��N�Xk
N�=xk �conver-

ence in mean�.
That construction and that of the concentrating sequences of projections of Sec. II A 1 still has

ther variants. We say that a sequence of states ��N� is concentrating at x and we write �N→x,
hen

lim
N↑+�

�N�G�XN�� = G�x� �2.8�

or all G�F. The considerations of Proposition 2.1 apply also here and one can equivalently
eplace the set of all noncommutative analytic functions with functions of a single variable.

. Gibbs-von Neumann entropy

The counting entropy of Boltzmann extends to general states such as the von Neumann
ntropy which is the quantum variant of the Gibbs formula, both being related to the relative
ntropy defined with respect to a trace reference state. Analogous to �2.6�, we define

Hcan�x� = lim sup
�N→x

1

N
H��N� , �2.9�

here H��N��0 is, upon identifying the density matrix �N for which �N�·�=TrN��N · �,

H��N� = − Tr��N log �N� . �2.10�
Second, we consider
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H1
can�x� = lim sup

�N→
1

x

1

N
H��N� . �2.11�

bviously, H1
can is the analog of the canonical entropy in thermostatics and the easiest to compute,

ee also under Sec. II B 3. To emphasize that, we call any sequence of states ��N�, �N→
1

x such that
im supN�1/N�H��N�=H1

can�x� a canonical macrostate at x.
Another generalization of the H-function is obtained when replacing the trace state �corre-

ponding to the counting� with a more general reference state = �N�N. In that case we consider
he H-function as derived from the relative entropy, and differing from the above-used convention
y the sign and an additive constant:

H1
can�x�� = lim inf

�N→
1

x

1

N
H��N�N� . �2.12�

ere, defining �N and �0
N as the density matrices such that �N�·�=Tr��N · � and N�·�=Tr��0

N · �,

H��N�N� = Tr��N�log �N − log �0
N�� . �2.13�

emark that this last generalization enables one to cross the border between closed and open
hermodynamic systems. Here, the state �N� can be chosen as a nontrivial stationary state for an
pen system, and the above-defined H-function H1

can�x �� may lose natural counting and thermo-
ynamic interpretations. Nevertheless, its monotonicity properties under dynamics satisfying suit-
ble conditions justify this generalization, see Sec. IV.

. Canonical macrostates

The advantage of the canonical formulation of the variational problem for the H-function as in
2.11� is that it can often be solved in a very explicit way. A class of general and well-known
xamples of canonical macrostates have the following Gibbsian form.3

If �= ��1 , . . . ,�n� are such that the sequence of states ���
N�, ��

N�·�=TrN���
N · � defined by

��
N =

1

Z�
NeN	k�kXk

N
, Z�

N = TrN�eN	k�kXk
N� �2.14�

atisfies limN↑+���
N�Xk

N�=xk, k=1, . . . ,n, then ���
N� is a canonical macrostate at x, and

H1
can�x� = lim sup

N

1

N
log Z�

N − 	
k

�kxk. �2.15�

II. EQUIVALENCE OF ENSEMBLES

A basic intuition of statistical mechanics is that adding those many new concentrating states in
he variational problem, as done in Sec. II B, does not actually change the value of the H-function.
n the same manner of speaking, one would like to understand the definitions �2.9� and �2.11� in
ounting-terms. In what sense do these entropies represent a dimension �the size� of a �micro-
copic� subspace?

Trivially, Hmc�Hcan�H1
can, and Hcan�x�=H1

can�x� iff some canonical macrostate �N→
1

x is
ctually concentrating at x, �N→x. We give general conditions under which the full equality can
e proven. We have again a sequence of observables Xk

N with spectral measure given by the
rojections Qk

N�dz� ,k�K.
Theorem 3.1: Assume that for a sequence of density matrices �N�0, the corresponding

�N�N is a canonical macrostate at x and that the following two conditions are verified:
�i� �Exponential concentration property.�
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For every ��0 and k�K there are Ck����0 and Nk��� so that

�
xk−�

xk+�

�N�Qk
N�dz�� � 1 − e−Ck���N �3.1�

for all N�Nk���.
�ii� �Asymptotic equipartition property.�

For all ��0,

lim
N↑+�

1

N
log�

−�

�

�N�Q̃N�dz�� = 0, �3.2�

where Q̃N denotes the projection operator-valued measure of the operator �1/N��log �N

−�N�log �N��.

hen, Hmc�x�=Hcan�x�=H1
can�x��0.

Theorem 3.1 evidently expresses that the microcanonical and the canonical ensembles are
quivalent. Results of that kind are well-known in the literature, see e.g., Ref. 14 or 7. An example
f a similar type of reasoning for the quantum case is given in Ref. 11. Theorem 3.1 is, however,
lightly different from these results in the following aspects,

�1� When considering the quantum microcanonical ensemble, one usually starts out with
spectral projections PN associated with one macroscopic observable. That at least is the
approach in Ref. 11 and it is also sketched at the very beginning of Sec. II. Our approach
is, however, not limited to one macroscopic observable. Indeed, remember that the �Xk

N�k

need not commute �Sec. II A�.
�2� Results on equivalence of ensembles, including those contained in, e.g., Refs. 14, 7, and

11 are mostly dealing solely with translation-invariant lattice spin systems. We do not
have that limitation here; instead we have the assumptions �3.2� and �3.1�.

�3� Even within the context of translation-invariant lattice spin systems, the results in Refs.
14, 7, and 11 do not yield Theorem 3.1. In these references the microcanonical state is
defined as the average of projections PN, translated over all lattice vectors. That lattice
average is translation-invariant by construction �and hence technically easier to handle�,
but of course it is itself not longer a projection and hence it is not a microcanonical state
in the sense of the present paper.

Remarks on the conditions of Theorem 3.1: Whether one can prove the assumptions of Theo-
em 3.1, depends heavily on the particular model.

The exponential concentration property �3.1� is not trivial even for quantum lattice spin
ystems, and not even in their one-phase region. Let us mention one criterion under which �3.1�
an be checked, which indicates its deep relation to the problem of quantum large deviations.
onsider the generating functions

�k�t� = lim
N↑+�

1

N
log �N�etNXk

N
�, k � K . �3.3�

heir existence together with their differentiability at t=0 imply by an exponential Chebyshev
nequality that �N exponentially concentrates at x= ��k��0� ;k�K�. However, to our knowledge, the
ifferentiability of �k�t� has only been proven so far for lattice averages over local observables for
uantum spin lattice systems in a “high-temperature regime,” see Ref. 12, Theorem 2.15 and
emark 7.13, where a cluster expansion technique has been used. The existence of the generating

unctions �3.3� has also been studied in Ref. 10.
The asymptotic equipartition property �3.2� is easier. The terminology, originally in informa-

N
ion theory, comes from its immediate consequence �3.7� below, where P projects on a “high
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robability” region: as in the classical case, the Gibbs-von Neumann entropy measures in some
ense the size of the space of “sufficiently probable” microstates. For �3.2� it is enough to prove
hat the state �N is concentrating for the observable

AN =
1

N
log �N. �3.4�

xplicitly, it is enough to show that for all F�C�R�,

lim
N↑+�

��N�F�AN�� − F��N�AN��� = 0. �3.5�

n particular, if ��N�, �N=��
N is given by formula �2.14�, a sufficient condition for the asymptotic

quipartition property to be satisfied is that the pressure p��� defined as

p��� = lim
N↑+�

1

N
log Z�

N �3.6�

xists and is continuously differentiable at �=��x�.
Remark that for ergodic states of spin lattice systems, the asymptotic equipartition as ex-

ressed by �3.2� and �3.7� follows from the quantum Shannon-McMillan theorem, see Ref. 2, and
he references therein. An interesting variant of that result, which touches the problem of quantum
arge deviations, is the quantum Sanov theorem, proven for i.i.d. processes in Ref. 1. In contrast,
ur result focuses on the intimate relation of the asymptotic equipartition property to the problem
f equivalence of ensembles in the noncommutative context, and Theorem 3.1 formulates suffi-
ient conditions under which such an equivalence follows. An advantage of this approach is that
t is not restricted to the framework of spin lattice models with its underlying quasilocal structure.

As Hmc�Hcan�H1
can, we only need to establish that there is a concentrating sequence of

rojections for which its H-function equals the Gibbs-von Neumann entropy. Hence, the proof of
heorem 3.1 follows from the following lemma:

Lemma 3.2: If a sequence of states ��N� satisfies conditions �i� and �ii� of Theorem 3.1, then
here exists a sequence of projections �PN� exponentially concentrating at x and satisfying

lim
N↑+�

1

N
�log TrN�PN� − H��N�� = 0. �3.7�

Proof: There exists a sequence �N↓0 such that when substituted for �, �3.2� is still satisfied.

ake such a sequence and define PN=�−�N

�N dQ̃N�z�. By construction,

eN�hN−�N�PN � ��N�−1PN � eN�hN+�N�PN �3.8�

or any N=1,2 , . . ., with the shorthand hN= �1/N�H��N�. That yields the inequalities

TrN�PN� = �N���N�−1PN� � eN�hN+�N��N�PN� �3.9�

nd

TrN�PN� � eN�hN−�N��N�PN� . �3.10�

sing that limN↑+��1/N�log �N�PN�=0 proves �3.7�.
To see that �PN� is exponentially concentrating at x, observe that for all YN�0,

�N�YN� = TrN���N�1/2YN��N�1/2� � TrN�PN��N�1/2YN��N�1/2PN�

= TrN��YN�1/2PN�N�YN�1/2�
N�hN−�N� N N N N N −2N�N N N N N N
� e Tr �P �tr �Y �P � � e � �P �tr �Y �P � , �3.11�
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here we used inequalities �3.8�–�3.10�. By the exponential concentration property of ��N�,
nequality �3.1�, for all k�K, ��0, and N�Nk���,

�
R\�xk−�,xk+��

trN�dQk
N�z��PN� � e−�Ck���−2�N�N��N�PN��−1. �3.12�

hoose Nk���� such that �N�Ck��� /8 and �1/N� log �N�PN��−Ck��� /4 for all N�Nk����. Then
3.12� �exp�−Ck���N /2� for all N�maxNk��� ,Nk�����. �

V. H-THEOREM FROM MACROSCOPIC AUTONOMY

When speaking about an H-theorem or about the monotonicity of entropy one often refers,
nd even more so for a quantum setup, to the fact that the relative entropy verifies the contraction
nequality

H��N�N�N�N� � H��N�N� �4.1�

or all states �N ,N on HN and for all completely positive maps �N on B�HN�. That is true
lassically, quantum mechanically and for all small or large N. When the reference state N is
nvariant under �N, �4.1� yields the contractivity of the relative entropy with respect to N. How-
ver tempting, such inequalities should not be confused with second law or with H-theorems; note
n particular that H��N� defined in �2.10� is constant whenever �N is an automorphism:

��N�N�=H��N�.
In contrast, an H-theorem refers to the �usually strict� monotonicity of a quantity on the

acroscopic trajectories as obtained from a microscopically defined dynamics. Such a quantity is
ften directly related to the fluctuations in a large system and its extremal value corresponds to the
quilibrium or, more generally, to a stationary state.

In the previous section we have obtained how to represent a macroscopic state and constructed
candidate H-function. Imagine now a time-evolution for the macroscopic values, always refer-

ing to the same set of �possibly noncommuting macroscopic� observables Xk
N. To prove an

-theorem, we need basically two assumptions: macroscopic autonomy and the semigroup prop-
rty, or that there is a first-order autonomous equation for the macroscopic values. A classical
ersion of this study and more details can be found in Ref. 5.

. Microcanonical setup

Assume a family of automorphisms �t,s
N is given as acting on the observables from B�HN� and

atisfying

�t,s
N = �t,u

N �u,s
N , t � u � s . �4.2�

t follows that the trace TrN is invariant for �t,s
N .

Recall that 	�RK is the set of all admissible macroscopic configurations, Hmc�x��0. On this
pace we want to study the emergent macroscopic dynamics.

Autonomy condition. There are maps ��t,s�t�s�0 on 	 and there is a microcanonical mac-
ostate �PN�, PN= PN�x� for each x�	, such that for all G�F and t�s�0,

lim
N↑+�

trN��t,s
N G�XN��PN� = G��t,sx� . �4.3�

Semigroup property. The maps are required to satisfy the semigroup condition,

�t,u�u,s = �t,s �4.4�

or all t�u�s�0.
Theorem 4.1: Assume that the autonomy condition �4.3� and the semigroup condition �4.4�

mc
re both satisfied. Then, for every x�	, H �xt� is nondecreasing in t�0 with xt=�t,0x.
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Proof: Given x�	, fix a microcanonical macrostate PN→
mc

x and t�s�0. Using that ��t,s
N �−1 is

n automorphism and TrN���t,s
N �−1 · �=TrN�·�, the identity

trN��t,s
N G�XN��PN� =

TrN�G�XN���t,s
N �−1PN�

TrN���t,s
N �−1PN�

= trN�G�XN����t,s
N �−1PN�

ields ��t,s
N �−1PN→

mc
�t,sx due to autonomy condition �4.3�. Hence,

Hmc��t,sx� � lim sup
N↑+�

1

N
log TrN���t,s

N �−1PN� = Hmc�x� .

n particular, one has that xs=�s,0x�	. The statement then follows by the semigroup property
4.3�:

Hmc�xt� = Hmc��t,0x� = Hmc��t,sxs� � Hmc�xs� .

�

It is important to realize that a macroscopic dynamics, even autonomous in the sense of �4.3�,
eed not satisfy the semigroup property �4.1�. In that case one actually does not expect the
-function to be monotone; see Ref. 4 and below for an example. As obvious from the proof,
ithout that semigroup property of ��t,s�, �4.3� only implies H�xt��H�x�, t�0. Or, in a bit more
enerality, it implies that for all s�0 and x�	 the macrotrajectory �xt�t�s, xt=�t,s�x� satisfies
�xt��H�xs� for all t�s.

Remark that while the set of projections is invariant under the automorphisms ��t,s
N �, this is not

rue any longer for more general microscopic dynamics defined as completely positive maps, and
escribing possibly an open dynamical system interacting with its environment. In the latter case
he proof of Theorem 4.1 does not go through and one has to allow for macrostates described via

ore general states, as in Sec. II B. The revision of the argument for the H-theorem within the
anonical setup is done in the next section.

. Canonical setup

We have completely positive maps ��t,s
N �t�s�0 on B�HN� satisfying

�t,s
N = �t,u

N �u,s
N , t � u � s � 0 �4.5�

nd leaving invariant the state N; they represent the microscopic dynamics. The macroscopic
ynamics is again given by maps �t,s.

As a variant of autonomy condition �4.3�, we assume that the maps �t,s are reproduced along
he time-evolution in the mean. Namely, see definition �2.12�, for every x�	1��= x ;H1

can�x ��

� � we ask that a canonical macrostate �N→
1

x exists such that, for all t�s�0,

�t,sx = lim
N↑+�

�N��t,s
N XN� . �4.6�

t the same time, we still assume the semigroup condition �4.4�.
Theorem 4.2: Under conditions �4.6� and �4.4�, the function H1

can��t,0x �� is nonincreasing in
�0 for all x�	1��.

Proof: If �N→
1

x is a canonical macrostate at x then, by the monotonicity of the relative
ntropy,

H1
can�x�� = lim inf

N↑+�

1

N
H��N�N� � lim inf

N↑+�

1

N
H��N�t,s

N �N� .

N N
n the other hand, by �4.6�, the sequence �� �t,s� is concentrating in the mean at �t,s�x�, yielding
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H1
can�x�� � H1

can��t,sx�� .

sing �4.4�, the proof is now finished as in Theorem 4.1. �

. Example: The quantum Kac model

A popular toy model to illustrate and to discuss essential features of relaxation to equilibrium
as been introduced by Mark Kac.9 Here we review an extension that can be called a quantum Kac
odel, we described it extensively in Ref. 4, to learn only later that essentially the same model
as considered by Max Dresden and Frank Feiock in Ref. 6. However, there is an interesting
ifference in interpretation to which we return at the end of the section.

At each site of a ring with N sites there is a quantum bit �i�C2 and a classical binary variable

i= ±1 �which we also consider to be embedded in C2�. The microstates are thus represented as
ectors �� ;��= ��1 , . . . ,�N ;�1 , . . . ,�N�, being elements of the Hilbert space HN=C2N � C2N. The
ime is discrete and at each step two operations are performed: a right shift, denoted below by SN

nd a local scattering or update VN. The unitary dynamics is given as

UN = SNVN, Ut
N = �UN�t for t � N �4.7�

ith the shift

SN��;�� = ��N,�1, . . . ,�N−1;�� �4.8�

nd the scattering

VN��;�� = �1 − �1

2
V1�1 +

1 + �1

2
�1, . . . ,

1 − �N

2
VN�N +

1 + �N

2
�N;�� �4.9�

xtended to an operator on HN by linearity. Here, V is a unitary 2�2 matrix and Vi its copy at site
=1, . . . ,N.

We consider the family of macroscopic observables

X0
N =

1

N
	
i=1

N

�i, X

N =

1

N
	
i=1

N

�i

, 
 = 1,2,3,

here �i
1 ,�i

2 ,�i
3 are the Pauli matrices acting at site i and embedded to operators on HN. We fix

acroscopic values x= �� ,m1 ,m2 ,m3�� �−1, +1�4 and we construct a microcanonical macrostate
PN� in x in the following way.

Let �N be a positive sequence in R such that �N↓0 and N1/2�N↑ +� as N↑ +�. For
� �−1,1�, let Q0

N��� be the spectral projection associated to X0
N, on the interval ��−�N ,�

�N�. For m� = �m1 ,m2 ,m3�� �−1,1�3, we already constructed a microcanonical macrostate QN�m� �
n Sec. II A 4. Obviously, Q0

N��� and QN�m� � commute and the product PN=Q0
N���QN�m� � is a

rojection. It is easy to check that PN is a microcanonical macrostate at x= �� ,m� �.
The construction of the canonical macrostate is standard along the lines of Sec. II B 3. The

orresponding H-functions are manifestly equal:

Hmc�x� = H1
can�x� = ��1 + m

2
� + ��1 − m

2
� + ��1 + �

2
� + ��1 − �

2
� �4.10�

ith ��x�=−x log x for x� �0,1� and ��0�=0, otherwise ��x�=−�.
We now come to the conditions of Theorem 4.1. The construction of the macroscopic dynam-

cs and the proof of its autonomy was essentially done in Ref. 4. The macroscopic equation �t

� is obvious and the equation for m� t can be written, associating m� t with the reduced 2�2 density
� � t t t
atrix �t= �1+mt ·�� /2, in the form �t=���, t=0,1 , . . ., where ��= ���� and
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����� =
1 − �

2
V�V* +

1 + �

2
� . �4.11�

he semigroup condition �4.4� is then also automatically checked.
In order to understand better the necessity of the semigroup property for an H-theorem to be

rue, compare the above with another choice of macroscopic variables. Assume we had started out
ith

X0
N =

1

N
	
i=1

N

�i, X1
N =

1

N
	
i=1

N

�i
1

s the only macroscopic variables, as was done in Ref. 6. A microcanonical macrostate can again
e easily constructed by setting Q0

N��� the spectral projection associated to X0
N on the interval

�−�N ,�+�N� and Q1
N�m� � the spectral projection for X1

N on ��−�N ,�+�N�, and finally PN

Q0
N���Q1

N�m� � as before. The sequence �PN� defines a microcanonical macrostate at �� ,m� � and
he autonomy condition �4.3� is satisfied. However, the macroscopic evolution does not satisfy the
emigroup property �4.4� and, in agreement with that, the corresponding H-functions are not
onotonous in time �see Ref. 4�.
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