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The control of chemical dynamics requires understanding the effect of time-dependent transition
rates between states of chemomechanical molecular configurations. Pumping refers to generating a
net current, e.g., per period in the time dependence, through a cycle of consecutive states. The work
of artificial machines or synthesized molecular motors depends on it. In this paper we give short and
simple proofs of no-go theorems, some of which appeared before but here with essential extensions
to non-Markovian dynamics, including the study of the diffusion limit. It allows to exclude certain
protocols in the working of chemical motors where only the depth of the energy well is changed in
time and not the barrier height between pairs of states. We also show how pre-existing steady state
currents are, in general, modified with a multiplicative factor when this time dependence is turned
on. © 2010 American Institute of Physics. �doi:10.1063/1.3446811�

I. INTRODUCTION

Molecular cybernetics deals with the control and the
steering of system of molecules. As part of systems chemis-
try, it investigates models of chemical networks with time-
dependent dynamics. A common application is found in the
study of molecular motors or mesoscopic machines. Here,
chemical or electrical gradients repetitively and progres-
sively drive a system away from equilibrium in such a way
that when the motor returns to its original configuration, a
physical task performed by the machine is not undone.1,2

This technology is ubiquitous in nature in the form of trans-
lational and rotational movements, e.g., in muscle fibers,
bacterial flagella and cilia,3,4 or to transport material within
and across a cell membrane, either powered by solar energy
�as in photosynthesis� or by chemical energy stored in mo-
lecular bonds �e.g., adenosine triphosphate�.

Artificial designs analogous to such motors use external
time-dependent perturbations such as light, heat, or chemical
stimulus to drive the system.5–9 It is thus relevant, in attempts
to synthesize and control artificial molecular motors, to un-
derstand the relation between the external pumping and cre-
ation of systematic flows. Previously, similar questions were
asked by Thouless10 for electronic pumping. Astumian and
Derényi11 studied charge transfer from a lower to a higher
chemical potential by varying the gate and portal energies.
Astumian12 also analyzed the adiabatic regime of ion pump-
ing in externally driven protein structures and in a molecular
motor based on a three-ring catenane.13 A general theory of
adiabatic pumps in terms of geometrical phase was proposed
by Sinitsyn and Nemenman.14 Chernyak and Sinitsyn15 dis-
covered that the adiabatic pumping currents become quan-
tized at low temperatures. Generalizations beyond adiabatic
regimes are so far limited to Markov models.

In the present paper we concentrate on no-go or no-

pumping theorems, stating the absence of a net time-
averaged current under certain protocols. We refer to the ex-
periment of Leigh et al.5 on unidirectional motion in �2�- and
�3�-catenanes. Rahav et al.16 were the first to give a no-
pumping theorem for jump processes with nonadiabatic
pumping and generalization to diffusion processes.17 This
was further studied and systematized by Chernyak and
Sinitsyn18 so that the following general conclusion was
reached: When the dynamics can be modeled as a Markov
state system for which the transitions between states x and y
have an Arrhenius-type time dependence

wt�x,y� = A�x,y�eGt�x�/kBT, A�x,y� = A�y,x� ,

with periodic time-dependent energy wells Gt�x� and with
constant energy barriers as represented by the symmetric fac-
tors A�x ,y�, then the time-averaged current J�x ,y� along ev-
ery transition x→y is zero. As a result, no net work can be
done with such protocol.

The purpose of the paper is to extend the arguments
proposed in Ref. 18 and to give the shortest general proof of
this result �Sec. III�, which at the same time also applies to
classes of non-Markov models �Sec. IV� and for which the
diffusion limit becomes equally simple �Sec. V�. At the end
we set the result into a broader context by showing that the
time-dependent protocol under consideration in arbitrary �in
general nonequilibrium� systems modifies all currents by a
global multiplicative factor �Sec. VI�. We start with the gen-
eral setup in terms of a Markov jump process.

II. SETUP

Markov state models and their extensions are important
tools for modeling thermodynamic processes of open
systems19 and they find numerous applications in chemical
kinetics19–22 and in biochemistry.23 In our abstract framework
we use x ,y , . . . to denote the long-lived or metastable states
that locally minimize a given free energy landscape G��x�
under equilibrium conditions; for instance, they refer to ch-
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emomechanical configuration of molecules within a suitable
coarse-grained level of description. Together, they form the
vertices of a stochastic network with bonds between pairs
�xy� indicating possible transitions. The dynamics is encoded
in the transition rates w��x ,y� satisfying the condition of
detailed balance

e−G��x�w��x,y� = e−G��y�w��y,x� , �1�

with the free energies G� in kBT units. The index � indicates
a possible dependence on an externally controlled parameter
which varies the depth of the local free energy minima
G��x�. Detailed balance �1� implies that for fixed �, the dy-
namics �by assumption ergodic� relaxes to the equilibrium
Gibbs distribution �exp�−G��x��.

As indicated before, we restrict ourselves to a protocol
that makes the transition rates,

wt�x,y� = A�x,y�eG��t��x�, A�x,y� = e−��x,y�, �2�

time dependent via the parameter �=��t� in the free energy
minima G�. ��x ,y�=��y ,x� are the effective barrier heights
which are kept fixed. In general, A�x ,y� just specifies the
Arrhenius prefactor in the transition rates and ��x ,y� devi-
ates from a true barrier energy by geometrical corrections.
However, a good approximation in many applications is to
consider G�x� and ��x ,y� as independent in the sense that
they can be manipulated independently from each other by
suitably varying the minima and the barrier heights, respec-
tively.

It has been shown in Ref. 16 that no energy pumping is
possible for such systems in the following sense. Let �t be
the instantaneous distribution function and let jt�x ,y� be the
corresponding instantaneous mean current between pairs of
states,

jt�x,y� = �t�x�wt�x,y� − �t�y�wt�y,x� , �3�

as obtained from the master equation written in the form

d�t�x�
dt

+ �
y

jt�x,y� = 0. �4�

There is no strictly stationary distribution as the rates are
time dependent, but when the protocol ��t� is periodic in
time, we expect to find that �t itself becomes periodic in
time, at least for sufficiently large times t. In any event, we
can define the time-averaged current

J�x,y� = lim
T

1

T
�

0

T

jt�x,y�dt �5�

and the no-pumping theorem states that this long-time aver-
age equals zero for all pairs of states x ,y. Thinking of inde-
pendent particles hopping on the network over x→y with
rate wt�x ,y�, no pumping refers to having no net time-
averaged flow of particles between any two nodes x and y.

In the next section we present a simple derivation of this
result within the present setup of Markov state models. Later
sections will provide extensions to the semi-Markov and the
diffusion systems, giving the main results of this paper.

III. NO-PUMPING THEOREM

Before starting with the proof we remind the reader of
two important facts. First of all, the no-pumping theorem is
only valid for some specific types of time dependence—in
general, for those considered in Eq. �2�. Even when the rates
are satisfying the condition of detailed balance �1� for each
fixed value of the parameter �, there is no a priori reason
why these could not arise a net current J�x ,y� in the process
with time dependent ��t�. In fact, that is exactly what hap-
pens in so-called flashing �and other� ratchets where the
change in the potential landscape produces a net flow of
particles.24 For example, a system �like a ratchet� with tran-
sition rates

w̃t�x,y� = A�x,y�e−�Gt�y�−Gt�x��/2, A�x,y� = A�y,x�

also satisfies detailed balance �1� for each fixed time t and
can be written analogous to Eq. �2� as

w̃t�x,y� = eGt�x�−�̃t�x,y�,

but the effective barriers �̃t�x ,y�= �Gt�x�+Gt�y�� /2
−ln A�x ,y� have become time dependent. Within the frame-
work of the no-go theorem there is absolutely no reason now
that the net currents would be identically zero �unless further
symmetries are imposed�.

Second, the geometry of the stochastic network is cer-
tainly relevant for the possible generation of a current. In
fact, the net current �0

Tjt�x ,y�dt over any edge �xy� connect-
ing two otherwise disconnected subgraphs is a total time
difference of the form NT�x ,y�−N0�x ,y� and hence automati-
cally approaches zero when time averaged as in Eq. �5�. Thus
wt�x ,y� can be arbitrary �=no restriction� over such a
“bridge” and the restricted form of time dependence as in Eq.
�2� is only required over those edges �xy� which belong to a
loop.

We now come to our formulation of the no-pumping
theorem. Consider the class of Markov jump processes with
states x ,y , . . . as in Sec. II. For all bonds �xy� in our stochas-
tic network that are part of a loop in the network, we require
that the time dependence in the transition rates is of the form

wt�x,y� = �t�x�p�x,y� , �6�

where �t�x�=�ywt�x ,y� is the time-dependent escape rate
and p�x ,y� is a time-independent transition probability;
p�x ,y��0,�yp�x ,y�=1. We assume that the matrix �p�x ,y��
is irreducible so that there is a unique left eigenvector � for
eigenvalue 1: �x��x�p�x ,y�=��y�. �That is automatically
so when the network of states is connected via
p�x ,y��0—Perron–Frobenius theorem.� We also assume de-
tailed balance, i.e., for some potential V,

e−V�x�p�x,y� = e−V�y�p�y,x� , �7�

so that in fact ��x��e−V�x�. Finally, we suppose that the limit

	�x� = lim
T

1

T
�

0

T

�t�x��t�x�dt �8�

exists. �That is automatically satisfied when the time depen-
dence is periodic but, clearly that is not strictly necessary.�
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The no-pumping theorem is now easily proven as fol-
lows. Since the full time evolution is obtained by solving
Eqs. �3� and �4�, the time integral of the latter gives

0 = lim
T

1

T
�

0

T d�t

dt
dt = − �

y

J�x,y� �9�

and

J�x,y� = 	�x�p�x,y� − 	�y�p�y,x� , �10�

where we have inserted condition �6�. Hence,
�x	�x�p�x ,y�=	�y�, which is the stationary master equa-
tion for a time-independent Markov chain with �unnormal-
ized� distribution 	 and current J. By irreducibility and by
detailed balance �7�, Eqs. �9� and �10� have the unique solu-
tion

	�x� � e−V�x�, J�x,y� = 0 �all pairs� �11�

as was to be proven.
Conditions �6� and �7� are just equivalent to Eqs. �1� and

�2� and, hence, the above theorem can immediately be ap-
plied to the situation of Sec. II. Specifically, for a system
with free energy wells G��x� and effective energy barriers
��x ,y�=��y ,x� as in Eq. �2�, we consider an arbitrary cyclic
path ��t�=��t+T� with some period T. Keeping the energy
barriers constant, condition �6� is verified with time-
dependent escape rates

�t�x� = eG��t��x��
y

e−��x,y�

and time-independent transition probabilities

p�x,y� =
e−��x,y�

�ye
−��x,y� ,

satisfying detailed balance �7� for V�x�=−ln�ye
−��x,y�.

As a summary, the essential ingredients are twofold.
First, the original time-dependent jump process is detailed
balanced for each fixed t, and second, the transition rates can
be decomposed into a product of time-dependent escape
rates �t�x� and time-independent transition probabilities
p�x ,y�.

The idea of the proof above, at least for a periodic time
dependence, is that the time-averaged current in the original
system �2� exactly coincides with the stationary current in a
temporally coarse-grained system with transition probabili-
ties p�x ,y�. As the original process is detailed balanced for
each fixed time, the stationary coarse-grained process is time
reversal symmetric and therefore the net current in the origi-
nal process vanishes.

As a final comment, it is important to realize that the
vanishing of the net �i.e., time-averaged� current, J�x ,y�=0,
does not imply that jt�x ,y�=0 at each time, unless the pro-
cess runs in the quasistatic regime. Related to that, the over-
all dissipation does remain nonzero in general. For this it
suffices to look at the time-averaged entropy flux �EF�,

EF �
1

2T
�
x,y
�

0

T

dt jt�x,y�ln
w��t��x,y�

w��t��y,x�
� 0.

We refer, e.g., to Sec. III in Ref. 25 for setting this expression
for the EF in a thermodynamic context. Inserting Eq. �1� we
compute

EF =
1

T
�

0

T

dt	 dG��t�

dt



�t

�12�

over the average work �dG��t� /dt��t
��x�t�x�dG��t��x� /dt.

Only in the quasistatic �or adiabatic� limit when we can take
�t�x��exp�−G��t��x�� do we get that �dG��t� /dt��t

=−d /dt ln�xexp�−G��t��x�� and is the EF=0.

IV. NON-MARKOV GENERALIZATION

By the simplicity of the proof above, the arguments al-
low a natural extension to more general jump processes in-
cluding those with nonexponential waiting time distributions.
These are called semi-Markov systems or continuous-time
random walks, here on the chemical network. The fact that
the presented method survives here is important, especially
since many biophysical and biochemical processes are be-
lieved to be essentially non-Markovian for a natural choice
of states.26

We consider a jump process for which the main change
with respect to the Markov case consists in its dependence
on the time t0 of the previous jump. In that way, given that
the system is in state x at time t since its last jump to x at t0,
the probability that the next jump occurs within the time
interval �t , t+dt� is given by ��x ; t0 , t�dt. �The Markov case
corresponds to ��x ; t0 , t�=�t�x�.� The probability rate that the
next jump goes to y is then

w�x,t0;y,t� = ��x;t0,t�p�x,y� , �13�

generalizing the time-dependent Markov transition rate �6�.
We keep the same assumptions on the transition matrix
�p�x ,y��, with its most important property being the condi-
tion of detailed balance �7�. The p�x ,y� define what is often
called the embedded Markov chain. The complication of the
memory present in the escape rates ��x ; t0 , t� turns out to be
irrelevant for our proof of the no pumping, as we now show.

The probability density that at time t the system is found
in state x and that the last jump before t occurred within
�t0 , t0+dt0� is denoted by ��x ; t0 , t�dt0—it relates to the stan-
dard single-time distribution as

�t�x� = �
0

t

��x;t0,t�dt0.

The mean current j�x , t0 ;y , t�dt0 counts the expected rate of
�directed� jumps x�y at time t when the previous jump
occurred in �t0 , t0+dt0�,

j�x,t0;y,t� = ��x;t0,t�w�x,t0;y,t� − ��y ;t0,t�w�y,t0;x,t� .

It is related to the standard mean current as
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jt�x,y� = �
0

t

j�x,t0;y,t�dt0. �14�

By construction, the single-time quantities �t and jt satisfy
the balance equation

d�t�x�
dt

+ �
y

jt�x,y� = 0. �15�

We proceed analogously as in the Markov case. We assume
that the limiting quantities

	�x� = lim
T

1

T
�

0

T �
0

t

��x;t0,t���x;t0,t�dt0dt , �16�

J�x,y� = lim
T

1

T
�

0

T

jt�x,y�dt �17�

are well defined. Then again,

J�x,y� = 	�x�p�x,y� − 	�y�p�y,x� �18�

and from integrating Eq. �15�,

�
y

J�x,y� = 0. �19�

By detailed balance �7� we reach the conclusion J�x ,y�=0
which ends the proof. As before, time homogeneity and de-
tailed balance of the embedded Markov chain imply that the
net flux through any pair �xy� asymptotically goes to zero.

V. DIFFUSION LIMIT

The same ideas apply to diffusion processes. We can
obtain them as continuum limits of Markov jump processes.
For simplicity we assume here that the stochastic network is
a one-dimensional chain, possibly turned into a circle. The
lattice spacing is denoted by 
 and we will take the con-
tinuum limit 
→0. We think of the transitions as the hopping
of a random walker between nearest neighbor sites x
→x�
 with rates depending on space- and time-dependent
amplitudes Dt�x� and a potential Ut�x�,

w
�x,x � 
� = 
−2Dt�x�Dt�x � 
�e�Ut�x�−Ut�x�
��/2

= 
−2Dt�x� �
1
2
−1Dt�x��ln Dt − Ut���x� + O�1� ,

�20�

by expanding around 
=0 and with O�1� indicating an error
term that remains bounded along 
→0. As in Eq. �6�, we
decompose these transition rates w
�x ,x�
� into a product
of escape rates �t


�x� and transition probabilities p
�x ,x�
�,
to find

�t

�x� = 2
−2Dt�x� + O�1�

and

p
�x,x � 
� =
1

2
�




4
�ln Dt − Ut���x� + O�1�

=
1

2
e�V�x�−V�x�
��/2 + O�1�

under the condition that V=Ut−ln Dt does not depend on
time. That then reproduces form �6� under which the no
pumping holds. This comparison to jump processes predicts
under what natural condition we may expect zero net current
also for diffusions. Next we give a direct argument that con-
firms this idea.

We are now dealing with a Langevin-type equation in Itô
form

dxt = − Dt�xt�Ut��xt�dt + Dt��xt�dt + 2Dt�xt�dBt, �21�

where dBt /dt indicates standard white noise. That describes
an overdamped one-dimensional diffusion on a ring �for pe-
riodic boundary condition� or on the line, in a time-
dependent potential landscape Ut�x� and with time-
dependent diffusion parameter Dt�x� �setting the environment
temperature equal to one�.

The corresponding Fokker–Planck equation reads

��t�x�
�t

+ jt��x� = 0,

�22�
jt�x� = − �t�x�Dt�x�U��x� − Dt�x��t��x� .

The same ideas as above can now be applied. As before we
define the quantities

	�x� = lim
T

1

T
�

0

T

�t�x�Dt�x�dt �23�

and the time-averaged current

J�x� = lim
T

1

T
�

0

T

jt�x�dt . �24�

By time integrating Eq. �22� we reach the stationarity condi-
tion

J��x� = 0. �25�

For “effective” potential V=Ut−ln Dt and assuming that V is
time independent, one gets

J�x� = lim
T

1

T
�

0

T

�− �tDtV��x� − ��tDt���dt

= − 	�x�V��x� − 	��x� . �26�

As a consequence, the time-averaged characteristics of the
original process �21� coincide with the stationary character-
istics of a time-independent detailed balanced diffusion in
the potential landscape V with unit diffusion parameter.
Therefore, 	�x��exp�−V�x�� and J=0 is the �unique� solu-
tion.

We conclude that for diffusion process with only gradi-
ent forces the condition,
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�

�t
�Dte

−Ut� = 0 �27�

is sufficient for the vanishing of the average current �24�. We
recognize in Eq. �27� the condition for time independence of
the transition probability p
�x ,x�
� of the random walk in
Eq. �21�. Our result also agrees with the no-pumping condi-
tion found previously by a more complicated method.17 A
no-pumping theorem for a general Langevin process on a
compact manifold of arbitrary dimension was given in Ref.
18, using a method similar to the above.

VI. NONEQUILIBRIUM GENERALIZATION

A natural question arises how the extra time-dependence
affecting only the energy wells or escape rates such as in Eq.
�6� modifies the long-time characteristics of a general non-
equilibrium system with steady currents already present. We
answer here that question by generalizing the above argu-
ment, restricting ourselves to the case of jump processes
�Sec. III�. This will throw more light into the nature and
robustness of no-pumping theorems.

As before in Eq. �2� we start from transition rates

wt�x,y� = w�x,y�eGt�x�, �28�

with time-dependent energy function Gt�x�=G��t��x� but now
we do not assume detailed balance for the reference process
with rate w�x ,y�. That reference could thus very well corre-
spond to a driven nonequilibrium but time-homogeneous
system. Let �s�x� be the stationary density of the reference,
with steady currents js�x ,y�=w�x ,y��s�x�−�s�y�w�y ,x� and
�yjs�x ,y�=0.

Inspecting formulas �9�–�11�, we find that the long time-
averaged current is

J�x,y� = lim
T

1

T
�

0

T

jt�x,y�dt = 	�x�w�x,y� − 	�y�w�y,x� ,

�29�

with

	�x� = lim
T

1

T
�

0

T

�t�x�eGt�x�dt

and satisfying the stationarity condition in all nodes

�
y

J�x,y� = 0. �30�

By the assumed ergodicity, Eqs. �29� and �30� have a unique
solution in the form

	�x� = ��s�x�, J�x,y� = �js�x,y� , �31�

with the normalization

� = lim
T

1

T�
x
�

0

T

�t�x�eGt�x�dt . �32�

Hence, we have arrived at an important conclusion: For the
time-dependent protocols under consideration, the time-
average current �29� is merely a global multiplicative factor
of the reference steady current. If the latter is zero, there is

also no resulting pumped current and we recover the original
results.

Remark that the ergodicity assumption is not essential:
in general, the dynamics decomposes into several ergodic
components made of mutually connected states. Within each
of the components, the reference stationary distribution �s is
unique and the above argument readily applies, up to that the
current multiplicative factor � is now generally different for
each component and it depends on the initial distribution �0.

In the case of a quasistatic process the system passes
through the states

�t�x� =
1

Zt
�s�x�e−Gt�x�, Zt = �

x

�s�x�e−Gt�x�, �33�

which are stationary with respect to the instantaneous energy
landscape Gt. Indeed, these distributions correspond to the
currents jt�x ,y�= js�x ,y� /Zt such that �yjt�x ,y�=0. The nor-
malization factor �32� then becomes

� = lim
T

1

T
�

0

T dt

Zt
. �34�

One also checks that the total dissipation as measured by the
time-integrated outgoing entropy flux �12� gets modified by
the same factor � �but only� in the adiabatic limit.

VII. CONCLUSION

The no-pumping theorem relies on the decomposition of
the jump rates into a time-dependent escape rate and a time-
homogeneous stochastic matrix �embedded Markov chain�.
Then, time-integrated currents depend on the given time-
dependent protocol only via a global multiplicative factor.
When the embedded Markov chain satisfies detailed balance,
the no-pumping result appears.

While the temporal coarse graining can indeed express
the original time-integrated current in terms of the steady
current for the embedded Markov chain, that is not true for
the dissipation or entropy flux which remains nonzero even
in case the embedded Markov chain is detailed balanced. The
same ideas and methods of proof apply to semi-Markov pro-
cesses and to the diffusion limit.
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